metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(1,10-phenanthroline-κ2N,N′)bis­­(tri­methyl­acetato)-κ2O,O′;κO-cobalt(II)

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China, and bDepartment of Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China
*Correspondence e-mail: chemsunbw@seu.edu.cn

(Received 19 June 2009; accepted 11 July 2009; online 29 July 2009)

In the title compound, [Co(C5H9O2)2(C12H8N2)(H2O)], the CoII atom is coordinated in a distorted octahedral environment by three carboxyl O atoms of two trimethyl­acetate ligands, one aqua O atom and two N atoms from 1,10-phen­anthroline. The crystal structure is stabilized by O—H⋯O hydrogen bonds and ππ stacking inter­actions [inter­planar distance between inter­digitating 1,10-phenanthroline ligands = 3.378 (2) Å].

Related literature

For π-π stacking inter­actions, see: Mizutani et al. (1999[Mizutani, M., Kubo, I., Jitsukawa, K., Masuda, H. & Einaga, H. (1999). Inorg. Chem. 38, 420-425.]); Sugimori et al. (1997[Sugimori, T., Masuda, H., Ohata, N., Koiwai, K., Odani, A. & Yamauchi, O. (1997). Inorg. Chem. 36, 576-580.]). For the [CoN2O4] octahedral coordin­ation, see: Zheng et al. (2002[Zheng, Y.-Q., Kong, Z.-P. & Lin, J.-L. (2002). J. Coord. Chem. 55, 1249-1257.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C5H9O2)2(C12H8N2)(H2O)]

  • Mr = 459.39

  • Triclinic, [P \overline 1]

  • a = 10.905 (2) Å

  • b = 11.345 (2) Å

  • c = 11.476 (5) Å

  • α = 68.100 (6)°

  • β = 64.560 (5)°

  • γ = 63.230 (6)°

  • V = 1116.0 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 293 K

  • 0.27 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku (2005). CrystalClear. Rigaku, The Woodlands, Texas, USA.]) Tmin = 0.831, Tmax = 0.862

  • 11372 measured reflections

  • 5047 independent reflections

  • 4271 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.103

  • S = 1.05

  • 5047 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—O2 2.0436 (15)
Co1—O1 2.0570 (15)
Co1—N1 2.1068 (17)
Co1—O5 2.1499 (16)
Co1—N2 2.1653 (18)
Co1—O4 2.2154 (16)
O2—Co1—O1 90.02 (6)
O2—Co1—N1 91.44 (7)
O1—Co1—N1 108.97 (7)
O2—Co1—O5 93.03 (7)
O1—Co1—O5 155.63 (6)
N1—Co1—O5 95.13 (6)
O2—Co1—N2 167.76 (7)
O1—Co1—N2 88.59 (7)
N1—Co1—N2 77.54 (7)
O5—Co1—N2 93.25 (7)
O2—Co1—O4 92.99 (7)
O1—Co1—O4 96.07 (6)
N1—Co1—O4 154.56 (6)
O5—Co1—O4 59.64 (6)
N2—Co1—O4 99.25 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O3 0.93 1.84 2.584 (2) 135
O1—H1C⋯O4i 0.93 2.11 2.721 (2) 122
Symmetry code: (i) -x, -y+1, -z+2.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The crystal's center atom CoII is coordinated by three carboxyl O atoms of two trimethylacetic acids, one aqua O atom and two N atoms from 1,10-phenanthroline (phen), what results in significantly distorted [CoN2O4] octahedral coordination (Zheng, et al., 2002). As illustrated in Fig. 1, Co—O bond distances to the chelating carboxyl O atoms are 2.215 and 2.150 Å, substantially longer than those of 2.057, and 2.044 Å to the aqua O atom and the monodentates carboxyl O atom; Co—N bond distance are 2.107 and 2.165 Å. The chelating phen ligand exhibits nearly perfect coplanarity. Coordinating H2O molecules donate hydrogen atoms to the noncoordinating and coordinating carboxyl O atoms of different acid ligands to form strong intra- and inter-molecular hydrogen bonds with H···O = 1.84, 2.11 Å and O–H···O = 135, 122°. Due to such bonds the centrosymmetric dimmers are connected into one-dimensional chains (Fig.2).

Interdigitation of the chelating phen ligands of adjacent chains leads to formation of two-dimensional layers (Fig. 2). Interplanar distances between interdigitating phen ligands are 3.523 Å on average, suggesting significant intermolecular π-π stacking interactions (Mizutani, et al., 1999; Sugimori et al., 1997).

Related literature top

For π-π stacking interactions, see: Mizutani et al. (1999); Sugimori et al. (1997). For the coordinatiom, see: Zheng et al. (2002).

Experimental top

CoCO3 100.1 mg (1 mmol) was added to a solution of 180.2 mg (1 mmol) 1,10-phenanthroline and 102.1 mg(1 mmol) trimethylacetic acids dissolved in 20 ml CH3OH—H2O (1:1 v/v) and stirred untile complete dissolution occurred, then, filtered the solution, laid in a peace environment. After a few days, colourless well shaped single crystals in the form of prisms deposited in the mother liquid. They were separated off, washed with cold ethanol and dried in air at room temperature.

Refinement top

H atoms were placed in geometrical positions and refined using a riding model, with O—H = 0.93 Å, C—H = 0.93 - 0.96 Å and Uiso(H) = 1.2 or 1.5Ueq(C, O). The water H atoms were located from the difference map and refined freely.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. All hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Crystal packing of the compound (I). Hydrogen bonds are shown as dashed lines.
Aqua(1,10-phenanthroline-κ2N,N')bis(trimethylacetato)- κ2O,O';κO-cobalt(II) top
Crystal data top
[Co(C5H9O2)2(C12H8N2)(H2O)]Z = 2
Mr = 459.39F(000) = 482
Triclinic, P1Dx = 1.367 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.905 (2) ÅCell parameters from 3476 reflections
b = 11.345 (2) Åθ = 2.3–27.5°
c = 11.476 (5) ŵ = 0.80 mm1
α = 68.100 (6)°T = 293 K
β = 64.560 (5)°Prism, colourless
γ = 63.230 (6)°0.27 × 0.20 × 0.20 mm
V = 1116.0 (6) Å3
Data collection top
Rigaku SCXmini
diffractometer
5047 independent reflections
Radiation source: fine-focus sealed tube4271 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 13.6612 pixels mm-1θmax = 27.4°, θmin = 2.4°
Thin–slice ω scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1414
Tmin = 0.831, Tmax = 0.862l = 1414
11372 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.3479P]
where P = (Fo2 + 2Fc2)/3
5047 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Co(C5H9O2)2(C12H8N2)(H2O)]γ = 63.230 (6)°
Mr = 459.39V = 1116.0 (6) Å3
Triclinic, P1Z = 2
a = 10.905 (2) ÅMo Kα radiation
b = 11.345 (2) ŵ = 0.80 mm1
c = 11.476 (5) ÅT = 293 K
α = 68.100 (6)°0.27 × 0.20 × 0.20 mm
β = 64.560 (5)°
Data collection top
Rigaku SCXmini
diffractometer
5047 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
4271 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 0.862Rint = 0.026
11372 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.05Δρmax = 0.37 e Å3
5047 reflectionsΔρmin = 0.52 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.26826 (3)0.38218 (3)0.84914 (3)0.03513 (10)
C10.5399 (2)0.3266 (2)0.6055 (2)0.0460 (5)
H1B0.49950.27670.59370.055*
C20.6762 (3)0.3305 (3)0.5189 (2)0.0583 (7)
H2A0.72410.28580.44980.070*
C30.7377 (3)0.4008 (3)0.5370 (2)0.0604 (7)
H3A0.82890.40300.48100.073*
C40.6637 (2)0.4695 (2)0.6398 (2)0.0507 (6)
C50.7182 (3)0.5469 (3)0.6670 (3)0.0662 (8)
H5A0.81100.54880.61690.079*
C60.6393 (3)0.6162 (3)0.7623 (3)0.0661 (8)
H6A0.67830.66520.77710.079*
C70.4955 (3)0.6168 (2)0.8425 (3)0.0514 (6)
C80.4059 (3)0.6901 (2)0.9420 (3)0.0620 (7)
H8A0.43760.74380.95900.074*
C90.2720 (3)0.6818 (3)1.0133 (3)0.0624 (7)
H9A0.21070.73111.07850.075*
C100.2271 (3)0.5989 (2)0.9882 (2)0.0527 (6)
H10A0.13540.59401.03860.063*
C110.4410 (2)0.5369 (2)0.8231 (2)0.0404 (5)
C120.5258 (2)0.4631 (2)0.7205 (2)0.0389 (5)
C130.2435 (2)0.2123 (2)1.0675 (2)0.0367 (4)
C140.2332 (2)0.0909 (2)1.1843 (2)0.0420 (5)
C150.0878 (3)0.1255 (3)1.2913 (3)0.0783 (10)
H15A0.01160.15601.25450.117*
H15B0.07720.19591.32580.117*
H15C0.08250.04651.36140.117*
C160.2528 (3)0.0223 (3)1.1296 (3)0.0612 (7)
H16A0.17600.00581.09450.092*
H16B0.25090.10201.19930.092*
H16C0.34410.04181.06060.092*
C170.3577 (4)0.0419 (3)1.2395 (3)0.0760 (9)
H17A0.35060.03431.31270.114*
H17B0.35190.11371.26880.114*
H17C0.44840.01551.17150.114*
C180.1598 (2)0.2719 (2)0.7243 (2)0.0408 (5)
C190.1761 (3)0.1485 (2)0.6869 (2)0.0465 (5)
C200.3296 (3)0.0940 (3)0.5955 (3)0.0764 (9)
H20A0.34040.01650.57170.115*
H20B0.39770.06840.64030.115*
H20C0.34740.16300.51700.115*
C210.0678 (3)0.1857 (3)0.6171 (3)0.0674 (7)
H21A0.07990.10690.59450.101*
H21B0.08410.25440.53800.101*
H21C0.02880.21920.67490.101*
C220.1490 (4)0.0425 (3)0.8136 (3)0.0786 (9)
H22A0.15850.03660.79330.118*
H22B0.05300.07810.87140.118*
H22C0.21830.01870.85640.118*
O10.10121 (15)0.53873 (15)0.78736 (15)0.0450 (4)
H1A0.05910.52560.74000.054*
H1C0.06780.62260.80680.054*
O20.25728 (16)0.25900 (16)0.76443 (17)0.0490 (4)
O30.05280 (19)0.37779 (19)0.7150 (2)0.0682 (5)
O40.13089 (16)0.30786 (15)1.04733 (15)0.0483 (4)
O50.36512 (16)0.21463 (16)0.98721 (16)0.0485 (4)
N10.46630 (18)0.39072 (17)0.70320 (17)0.0386 (4)
N20.30790 (19)0.52688 (17)0.89663 (18)0.0407 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02998 (15)0.03444 (16)0.03732 (16)0.00956 (11)0.00698 (11)0.01055 (11)
C10.0433 (12)0.0422 (12)0.0396 (11)0.0056 (10)0.0117 (10)0.0092 (9)
C20.0458 (13)0.0608 (15)0.0377 (12)0.0037 (12)0.0035 (11)0.0094 (11)
C30.0386 (12)0.0688 (17)0.0433 (13)0.0161 (12)0.0033 (11)0.0045 (12)
C40.0385 (11)0.0526 (13)0.0453 (13)0.0193 (10)0.0116 (10)0.0077 (11)
C50.0516 (15)0.0687 (18)0.0726 (18)0.0381 (14)0.0156 (14)0.0069 (15)
C60.0641 (17)0.0579 (16)0.087 (2)0.0393 (14)0.0289 (16)0.0018 (15)
C70.0579 (14)0.0364 (11)0.0643 (15)0.0216 (11)0.0274 (12)0.0004 (11)
C80.0818 (19)0.0400 (13)0.0790 (19)0.0234 (13)0.0383 (16)0.0101 (13)
C90.0763 (18)0.0443 (13)0.0698 (17)0.0115 (13)0.0252 (15)0.0252 (13)
C100.0519 (13)0.0469 (13)0.0538 (14)0.0129 (11)0.0091 (11)0.0198 (11)
C110.0400 (11)0.0336 (10)0.0444 (12)0.0139 (9)0.0144 (9)0.0025 (9)
C120.0356 (10)0.0356 (10)0.0373 (11)0.0139 (9)0.0120 (9)0.0029 (8)
C130.0407 (11)0.0344 (10)0.0362 (10)0.0099 (9)0.0124 (9)0.0126 (8)
C140.0510 (13)0.0345 (10)0.0403 (11)0.0128 (9)0.0155 (10)0.0093 (9)
C150.085 (2)0.0597 (17)0.0449 (15)0.0168 (16)0.0033 (15)0.0036 (13)
C160.0826 (19)0.0495 (14)0.0597 (15)0.0311 (14)0.0184 (14)0.0150 (12)
C170.108 (2)0.0553 (16)0.087 (2)0.0338 (17)0.067 (2)0.0124 (15)
C180.0323 (10)0.0515 (12)0.0380 (11)0.0126 (9)0.0069 (9)0.0169 (10)
C190.0456 (12)0.0543 (13)0.0463 (12)0.0159 (10)0.0159 (10)0.0181 (11)
C200.0578 (16)0.088 (2)0.091 (2)0.0096 (15)0.0136 (16)0.0597 (19)
C210.0757 (19)0.0776 (19)0.0733 (18)0.0313 (16)0.0385 (16)0.0182 (15)
C220.120 (3)0.0628 (18)0.074 (2)0.0452 (19)0.047 (2)0.0005 (15)
O10.0391 (8)0.0383 (8)0.0444 (8)0.0016 (6)0.0120 (7)0.0116 (7)
O20.0395 (8)0.0492 (9)0.0671 (10)0.0054 (7)0.0226 (8)0.0275 (8)
O30.0481 (10)0.0667 (12)0.0999 (15)0.0029 (9)0.0371 (10)0.0413 (11)
O40.0412 (8)0.0419 (8)0.0395 (8)0.0022 (7)0.0075 (7)0.0078 (7)
O50.0393 (8)0.0500 (9)0.0503 (9)0.0158 (7)0.0147 (7)0.0041 (7)
N10.0352 (9)0.0361 (9)0.0350 (9)0.0083 (7)0.0084 (7)0.0065 (7)
N20.0388 (9)0.0367 (9)0.0436 (10)0.0125 (8)0.0087 (8)0.0118 (8)
Geometric parameters (Å, º) top
Co1—O22.0436 (15)C13—C141.529 (3)
Co1—O12.0570 (15)C14—C151.518 (3)
Co1—N12.1068 (17)C14—C161.525 (3)
Co1—O52.1499 (16)C14—C171.533 (3)
Co1—N22.1653 (18)C15—H15A0.9600
Co1—O42.2154 (16)C15—H15B0.9600
C1—N11.320 (3)C15—H15C0.9600
C1—C21.399 (3)C16—H16A0.9600
C1—H1B0.9300C16—H16B0.9600
C2—C31.361 (4)C16—H16C0.9600
C2—H2A0.9300C17—H17A0.9600
C3—C41.398 (4)C17—H17B0.9600
C3—H3A0.9300C17—H17C0.9600
C4—C121.406 (3)C18—O31.251 (3)
C4—C51.433 (4)C18—O31.251 (3)
C5—C61.334 (4)C18—O21.263 (2)
C5—H5A0.9300C18—C191.528 (3)
C6—C71.436 (4)C19—C221.515 (4)
C6—H6A0.9300C19—C211.525 (3)
C7—C81.403 (4)C19—C201.526 (4)
C7—C111.404 (3)C20—H20A0.9600
C8—C91.360 (4)C20—H20B0.9600
C8—H8A0.9300C20—H20C0.9600
C9—C101.395 (3)C21—H21A0.9600
C9—H9A0.9300C21—H21B0.9600
C10—N21.321 (3)C21—H21C0.9600
C10—H10A0.9300C22—H22A0.9600
C11—N21.363 (3)C22—H22B0.9600
C11—C121.430 (3)C22—H22C0.9600
C12—N11.358 (3)O1—H1A0.9300
C13—O51.254 (2)O1—H1C0.9300
C13—O41.263 (2)O3—O30.000 (5)
O2—Co1—O190.02 (6)C14—C15—H15B109.5
O2—Co1—N191.44 (7)H15A—C15—H15B109.5
O1—Co1—N1108.97 (7)C14—C15—H15C109.5
O2—Co1—O593.03 (7)H15A—C15—H15C109.5
O1—Co1—O5155.63 (6)H15B—C15—H15C109.5
N1—Co1—O595.13 (6)C14—C16—H16A109.5
O2—Co1—N2167.76 (7)C14—C16—H16B109.5
O1—Co1—N288.59 (7)H16A—C16—H16B109.5
N1—Co1—N277.54 (7)C14—C16—H16C109.5
O5—Co1—N293.25 (7)H16A—C16—H16C109.5
O2—Co1—O492.99 (7)H16B—C16—H16C109.5
O1—Co1—O496.07 (6)C14—C17—H17A109.5
N1—Co1—O4154.56 (6)C14—C17—H17B109.5
O5—Co1—O459.64 (6)H17A—C17—H17B109.5
N2—Co1—O499.25 (7)C14—C17—H17C109.5
N1—C1—C2122.7 (2)H17A—C17—H17C109.5
N1—C1—H1B118.7H17B—C17—H17C109.5
C2—C1—H1B118.7O3—C18—O30.0 (2)
C3—C2—C1119.1 (2)O3—C18—O2123.9 (2)
C3—C2—H2A120.4O3—C18—O2123.9 (2)
C1—C2—H2A120.4O3—C18—C19119.52 (19)
C2—C3—C4120.0 (2)O3—C18—C19119.52 (19)
C2—C3—H3A120.0O2—C18—C19116.59 (19)
C4—C3—H3A120.0C22—C19—C21109.9 (2)
C3—C4—C12117.3 (2)C22—C19—C20109.9 (3)
C3—C4—C5124.4 (2)C21—C19—C20109.5 (2)
C12—C4—C5118.3 (2)C22—C19—C18107.5 (2)
C6—C5—C4121.6 (2)C21—C19—C18110.8 (2)
C6—C5—H5A119.2C20—C19—C18109.2 (2)
C4—C5—H5A119.2C19—C20—H20A109.5
C5—C6—C7121.5 (3)C19—C20—H20B109.5
C5—C6—H6A119.3H20A—C20—H20B109.5
C7—C6—H6A119.3C19—C20—H20C109.5
C8—C7—C11117.3 (2)H20A—C20—H20C109.5
C8—C7—C6124.2 (2)H20B—C20—H20C109.5
C11—C7—C6118.5 (2)C19—C21—H21A109.5
C9—C8—C7119.2 (2)C19—C21—H21B109.5
C9—C8—H8A120.4H21A—C21—H21B109.5
C7—C8—H8A120.4C19—C21—H21C109.5
C8—C9—C10119.7 (2)H21A—C21—H21C109.5
C8—C9—H9A120.2H21B—C21—H21C109.5
C10—C9—H9A120.2C19—C22—H22A109.5
N2—C10—C9123.4 (2)C19—C22—H22B109.5
N2—C10—H10A118.3H22A—C22—H22B109.5
C9—C10—H10A118.3C19—C22—H22C109.5
N2—C11—C7123.2 (2)H22A—C22—H22C109.5
N2—C11—C12116.97 (18)H22B—C22—H22C109.5
C7—C11—C12119.8 (2)Co1—O1—H1A120.0
N1—C12—C4122.4 (2)Co1—O1—H1C120.0
N1—C12—C11117.48 (18)H1A—O1—H1C120.0
C4—C12—C11120.1 (2)C18—O2—Co1130.80 (14)
O5—C13—O4119.26 (19)O3—O3—C180 (10)
O5—C13—C14119.71 (19)C13—O4—Co188.47 (12)
O4—C13—C14120.97 (19)C13—O5—Co191.69 (12)
C15—C14—C16110.2 (2)C1—N1—C12118.54 (19)
C15—C14—C13111.23 (19)C1—N1—Co1126.78 (16)
C16—C14—C13106.70 (18)C12—N1—Co1114.51 (13)
C15—C14—C17111.0 (2)C10—N2—C11117.2 (2)
C16—C14—C17107.7 (2)C10—N2—Co1129.99 (16)
C13—C14—C17109.8 (2)C11—N2—Co1112.71 (14)
C14—C15—H15A109.5
N1—C1—C2—C31.5 (4)O2—C18—O3—O30.00 (14)
C1—C2—C3—C41.0 (4)C19—C18—O3—O30.00 (8)
C2—C3—C4—C120.5 (3)O5—C13—O4—Co19.51 (19)
C2—C3—C4—C5179.6 (2)C14—C13—O4—Co1167.41 (17)
C3—C4—C5—C6176.4 (3)O2—Co1—O4—C1386.16 (12)
C12—C4—C5—C62.8 (4)O1—Co1—O4—C13176.50 (12)
C4—C5—C6—C70.0 (4)N1—Co1—O4—C1313.5 (2)
C5—C6—C7—C8178.4 (3)O5—Co1—O4—C135.59 (11)
C5—C6—C7—C113.1 (4)N2—Co1—O4—C1393.94 (13)
C11—C7—C8—C90.5 (4)O4—C13—O5—Co19.8 (2)
C6—C7—C8—C9179.1 (3)C14—C13—O5—Co1167.15 (16)
C7—C8—C9—C101.1 (4)O2—Co1—O5—C1386.06 (13)
C8—C9—C10—N20.5 (4)O1—Co1—O5—C1310.7 (2)
C8—C7—C11—N20.8 (3)N1—Co1—O5—C13177.79 (12)
C6—C7—C11—N2177.9 (2)N2—Co1—O5—C13104.45 (13)
C8—C7—C11—C12178.2 (2)O4—Co1—O5—C135.63 (11)
C6—C7—C11—C123.2 (3)C2—C1—N1—C120.3 (3)
C3—C4—C12—N11.7 (3)C2—C1—N1—Co1175.11 (16)
C5—C4—C12—N1179.1 (2)C4—C12—N1—C11.3 (3)
C3—C4—C12—C11176.7 (2)C11—C12—N1—C1177.10 (18)
C5—C4—C12—C112.5 (3)C4—C12—N1—Co1174.11 (16)
N2—C11—C12—N11.0 (3)C11—C12—N1—Co17.4 (2)
C7—C11—C12—N1178.02 (19)O2—Co1—N1—C12.54 (18)
N2—C11—C12—C4179.46 (19)O1—Co1—N1—C193.05 (18)
C7—C11—C12—C40.5 (3)O5—Co1—N1—C190.63 (18)
O5—C13—C14—C15161.7 (2)N2—Co1—N1—C1177.17 (18)
O4—C13—C14—C1521.4 (3)O4—Co1—N1—C197.5 (2)
O5—C13—C14—C1678.0 (2)O2—Co1—N1—C12177.56 (14)
O4—C13—C14—C1698.9 (2)O1—Co1—N1—C1291.92 (14)
O5—C13—C14—C1738.4 (3)O5—Co1—N1—C1284.39 (14)
O4—C13—C14—C17144.6 (2)N2—Co1—N1—C127.81 (13)
O3—C18—C19—C22109.2 (3)O4—Co1—N1—C1277.5 (2)
O3—C18—C19—C22109.2 (3)C9—C10—N2—C110.8 (4)
O2—C18—C19—C2270.2 (3)C9—C10—N2—Co1175.28 (19)
O3—C18—C19—C2110.9 (3)C7—C11—N2—C101.4 (3)
O3—C18—C19—C2110.9 (3)C12—C11—N2—C10177.5 (2)
O2—C18—C19—C21169.6 (2)C7—C11—N2—Co1175.31 (17)
O3—C18—C19—C20131.6 (3)C12—C11—N2—Co15.7 (2)
O3—C18—C19—C20131.6 (3)O2—Co1—N2—C10150.4 (3)
O2—C18—C19—C2049.0 (3)O1—Co1—N2—C1066.8 (2)
O3—C18—O2—Co19.3 (4)N1—Co1—N2—C10176.6 (2)
O3—C18—O2—Co19.3 (4)O5—Co1—N2—C1088.9 (2)
C19—C18—O2—Co1170.10 (15)O4—Co1—N2—C1029.1 (2)
O1—Co1—O2—C1815.6 (2)O2—Co1—N2—C1133.4 (4)
N1—Co1—O2—C18124.6 (2)O1—Co1—N2—C11116.99 (15)
O5—Co1—O2—C18140.2 (2)N1—Co1—N2—C117.21 (14)
N2—Co1—O2—C1899.0 (3)O5—Co1—N2—C1187.33 (15)
O4—Co1—O2—C1880.5 (2)O4—Co1—N2—C11147.09 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O30.931.842.584 (2)135
O1—H1C···O4i0.932.112.721 (2)122
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Co(C5H9O2)2(C12H8N2)(H2O)]
Mr459.39
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.905 (2), 11.345 (2), 11.476 (5)
α, β, γ (°)68.100 (6), 64.560 (5), 63.230 (6)
V3)1116.0 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.27 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.831, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
11372, 5047, 4271
Rint0.026
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.103, 1.05
No. of reflections5047
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.52

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Co1—O22.0436 (15)Co1—O52.1499 (16)
Co1—O12.0570 (15)Co1—N22.1653 (18)
Co1—N12.1068 (17)Co1—O42.2154 (16)
O2—Co1—O190.02 (6)N1—Co1—N277.54 (7)
O2—Co1—N191.44 (7)O5—Co1—N293.25 (7)
O1—Co1—N1108.97 (7)O2—Co1—O492.99 (7)
O2—Co1—O593.03 (7)O1—Co1—O496.07 (6)
O1—Co1—O5155.63 (6)N1—Co1—O4154.56 (6)
N1—Co1—O595.13 (6)O5—Co1—O459.64 (6)
O2—Co1—N2167.76 (7)N2—Co1—O499.25 (7)
O1—Co1—N288.59 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O30.931.842.584 (2)135.4
O1—H1C···O4i0.932.112.721 (2)122.2
Symmetry code: (i) x, y+1, z+2.
 

References

First citationMizutani, M., Kubo, I., Jitsukawa, K., Masuda, H. & Einaga, H. (1999). Inorg. Chem. 38, 420–425.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSugimori, T., Masuda, H., Ohata, N., Koiwai, K., Odani, A. & Yamauchi, O. (1997). Inorg. Chem. 36, 576–580.  CSD CrossRef CAS Web of Science Google Scholar
First citationZheng, Y.-Q., Kong, Z.-P. & Lin, J.-L. (2002). J. Coord. Chem. 55, 1249–1257.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds