organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3′,6′-Bis(ethyl­amino)-2′,7′-di­methyl-2-{[2-[(E)-3,4-methyl­ene­dioxy­benzyl­­idene­amino]eth­yl}spiro­[isoindoline-1,9′-xanthen]-3-one

aCollege of Chemistry and Chemical Engineering, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China, and bInstitute of Traditional Chinese Materia Medica, Chengde Medical College, Chengde 067000, People's Republic of China
*Correspondence e-mail: xuzhihong1980@yahoo.cn

(Received 24 June 2009; accepted 3 July 2009; online 15 July 2009)

The title compound, C36H36N4O4, was prepared as a spiro­lactam ring formation of the rhodamine dye for comparison with a ring-opened form. The xanthene ring system is approximately planar [r.m.s. deviations from planarity = 0.023 (9) Å for the xanthene ring]. The dihedral angles formed by the spiro­lactam and 1,3-benzodioxole rings with the xanthene ring system are 86.8 (1) and 74.3 (1)°, respectively.

Related literature

Rhodamine dyes are one of the most widely used fluoro­phores for labeling and sensing biomolecules, see: Ko et al. (2006[Ko, S.-K., Yang, Y.-K., Tae, J. & Shin, I. (2006). J. Am. Chem. Soc. 128, 14150-14155.]); Wu et al. (2007[Wu, D., Huang, W., Duan, C.-Y., Lin, Z.-H. & Meng, Q.-J. (2007). Inorg. Chem. 46, 1538-1540.]). For the structures of rhodamine derivatives bearing a lactam unit, see: Kwon et al. (2006[Kwon, J. Y., Jang, Y. J., Lee, Y. J., Kim, K. M., Seo, M. S., Nam, W. & Yoon, I. (2006). J. Am. Chem. Soc. 127, 10107-10111.]); Wu et al. (2007[Wu, D., Huang, W., Duan, C.-Y., Lin, Z.-H. & Meng, Q.-J. (2007). Inorg. Chem. 46, 1538-1540.]); Zhang et al. (2008[Zhang, L.-Z., Peng, X.-J., Gao, S. & Fan, J.-L. (2008). Acta Cryst. E64, o403.]); Deng et al. (2009[Deng, W.-J., Sun, D., Su, B.-Y., Wang, S.-P. & Zheng, H. (2009). Acta Cryst. E65, o1464.]); Tian & Peng (2008[Tian, M.-Z. & Peng, X.-J. (2008). Acta Cryst. E64, o1645.]).

[Scheme 1]

Experimental

Crystal data
  • C36H36N4O4

  • Mr = 588.69

  • Triclinic, [P \overline 1]

  • a = 9.561 (4) Å

  • b = 12.262 (5) Å

  • c = 13.005 (6) Å

  • α = 93.623 (8)°

  • β = 92.078 (8)°

  • γ = 92.827 (7)°

  • V = 1518.5 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.35 × 0.32 × 0.27 mm

Data collection
  • Bruker SMART CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.971, Tmax = 0.977

  • 8102 measured reflections

  • 5606 independent reflections

  • 3838 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.069

  • S = 1.83

  • 5606 reflections

  • 409 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Among many fluorescent compounds, rhodamine dyes are known to have excellent photophysical properties, and they are one of the most widely used fluorophores for labeling and sensing biomolecules (Ko et al., 2006; Wu et al., 2007). There are a few single-crystal reports about rhodamine derivatives bearing a lactam moiety (Kwon et al., 2006; Wu et al., 2007; Zhang et al., 2008; Tian et al., 2008; Deng et al., 2009). Detailed information on their molecular and crystal structures is necessary to understand their photophysical and photochemical properties.

In agreement with other reported models, (Wu et al., 2007; Zhang et al., 2008; Tian et al., 2008;) the main skeleton of the molecule is formed by the xanthene ring and the spirolactam-ring. As shown in Figure 1, The atoms of the xanthene ring or the spirolactam-ring are both nearly planar and are almost perpendicular to each other. The dihedral angle between the xanthene mean planes and the spirolactamring fragment is 86.8°. The dihedral angle between the xanthene mean planes and the 1,3-benzodioxole ring is 74.3°.

Related literature top

Rhodamine dyes are one of the most widely used fluorophores for labeling and sensing biomolecules, see: Ko et al. (2006); Wu et al. (2007). For the structures of rhodamine derivatives bearing a lactam unit, see: Kwon et al. (2006); Wu et al. (2007); Zhang et al. (2008); Deng et al. (2009); Tian & Peng (2008).

Experimental top

A portion of the N-(rhodamine-6 G)lactam-ethylenediamine (228 mg, 0.5 mmol) and 3,4-methylenedioxy-benzaldehyde (90 mg, 0.6 mmol) were mixed in fresh distilled acetonitrile (50 ml). The reaction solution was refluxed for 24 h under N2 atmosphere, the reslulting solution was evaporated to 10 ml and allowed to stand at room temperature overnight. The precipitate which appeared next day was filtered and the crude product was purified by recrystallization from acetonitrile to give 264.6 mg of the title compound in 90% yield. Single crystals suitable for X-ray measurements were obtained from acetonitrile solution by slow evaporation at room temperature.

Refinement top

The H atoms attached to C, N and O atoms were placed in geometrically calculated positions (C—H = 0.93–0.97 Å, N—H = 0.86 Å and O—H = 0.82 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(methyl C, O).

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at 30% probability level.
3',6'-Bis(ethylamino)-2',7'-dimethyl-2-{[2-[(E)-3,4- methylenedioxybenzylideneamino]ethyl}spiro[isoindoline-1,9'-xanthen]-3-one top
Crystal data top
C36H36N4O4Z = 2
Mr = 588.69F(000) = 624
Triclinic, P1Dx = 1.287 Mg m3
a = 9.561 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.262 (5) ÅCell parameters from 2059 reflections
c = 13.005 (6) Åθ = 2.6–25.8°
α = 93.623 (8)°µ = 0.09 mm1
β = 92.078 (8)°T = 296 K
γ = 92.827 (7)°Block, colorless
V = 1518.5 (12) Å30.35 × 0.32 × 0.27 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
5606 independent reflections
Radiation source: fine-focus sealed tube3838 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 25.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.971, Tmax = 0.977k = 1314
8102 measured reflectionsl = 1315
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.83 w = 1/[σ2(Fo2)]
5606 reflections(Δ/σ)max < 0.001
409 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C36H36N4O4γ = 92.827 (7)°
Mr = 588.69V = 1518.5 (12) Å3
Triclinic, P1Z = 2
a = 9.561 (4) ÅMo Kα radiation
b = 12.262 (5) ŵ = 0.09 mm1
c = 13.005 (6) ÅT = 296 K
α = 93.623 (8)°0.35 × 0.32 × 0.27 mm
β = 92.078 (8)°
Data collection top
Bruker SMART CCD area detector
diffractometer
5606 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3838 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.977Rint = 0.016
8102 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.83Δρmax = 0.18 e Å3
5606 reflectionsΔρmin = 0.25 e Å3
409 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0868 (2)1.00378 (15)0.21394 (16)0.0673 (7)
H1A1.07711.06800.16920.101*
H1B1.02861.00750.27520.101*
H1C1.18280.99960.23230.101*
C21.0422 (2)0.90267 (15)0.15876 (15)0.0498 (6)
H2A0.94510.90670.14040.060*
H2B1.04990.83780.20440.060*
C31.1025 (2)0.81736 (15)0.00388 (15)0.0366 (5)
C41.1834 (2)0.82230 (15)0.09733 (15)0.0384 (5)
C51.15344 (19)0.74560 (14)0.16730 (14)0.0384 (5)
H51.20720.74840.22850.046*
C61.04600 (19)0.66337 (14)0.15110 (14)0.0317 (5)
C70.97058 (19)0.66070 (14)0.05864 (14)0.0333 (5)
C80.99800 (19)0.73535 (14)0.01517 (14)0.0373 (5)
H80.94620.73030.07740.045*
C91.2989 (2)0.91013 (15)0.11943 (16)0.0585 (6)
H9A1.25850.97960.13210.088*
H9B1.35760.91300.06120.088*
H9C1.35400.89360.17910.088*
C101.01167 (19)0.58503 (14)0.23360 (14)0.0329 (5)
C110.89724 (18)0.50054 (14)0.19301 (14)0.0312 (5)
C120.82788 (19)0.50651 (14)0.09922 (15)0.0335 (5)
C130.71638 (19)0.43470 (14)0.06531 (15)0.0382 (5)
H130.67130.44230.00180.046*
C140.6722 (2)0.35141 (15)0.12629 (15)0.0371 (5)
C150.7419 (2)0.34181 (15)0.22286 (15)0.0381 (5)
C160.85157 (19)0.41539 (14)0.25314 (14)0.0381 (5)
H160.89760.40830.31640.046*
C170.6979 (2)0.25228 (15)0.29171 (16)0.0565 (6)
H17A0.76110.25430.35090.085*
H17B0.69990.18240.25420.085*
H17C0.60460.26330.31370.085*
C180.4790 (2)0.28637 (16)0.00008 (17)0.0574 (6)
H18A0.53990.28170.05810.069*
H18B0.43650.35660.00100.069*
C190.3653 (2)0.19525 (17)0.01317 (19)0.0815 (8)
H19A0.40750.12570.01590.122*
H19B0.31160.20230.07600.122*
H19C0.30490.20010.04410.122*
C201.14037 (19)0.53312 (14)0.27722 (14)0.0320 (5)
C211.2363 (2)0.47156 (14)0.22513 (15)0.0426 (5)
H211.22530.45450.15450.051*
C221.3490 (2)0.43615 (15)0.28146 (17)0.0507 (6)
H221.41610.39640.24780.061*
C231.3639 (2)0.45904 (16)0.38774 (17)0.0503 (6)
H231.43990.43380.42430.060*
C241.2665 (2)0.51889 (15)0.43903 (15)0.0445 (5)
H241.27540.53400.51000.053*
C251.15530 (19)0.55590 (14)0.38242 (14)0.0332 (5)
C261.0429 (2)0.62796 (15)0.41636 (16)0.0363 (5)
C270.86305 (19)0.72948 (14)0.32757 (15)0.0435 (5)
H27A0.88260.77450.27060.052*
H27B0.87580.77610.39060.052*
C280.7120 (2)0.68842 (16)0.31699 (18)0.0617 (7)
H28A0.69370.64780.25100.074*
H28B0.69040.64040.37140.074*
C290.5234 (2)0.77978 (17)0.38177 (17)0.0555 (6)
H290.50860.71610.41600.067*
C300.4246 (2)0.86726 (16)0.39934 (16)0.0446 (5)
C310.3017 (2)0.84294 (16)0.44650 (16)0.0523 (6)
H310.28650.77310.46920.063*
C320.1989 (2)0.91831 (17)0.46180 (17)0.0558 (6)
H320.11590.90080.49360.067*
C330.2274 (2)1.01850 (17)0.42755 (17)0.0503 (6)
C340.3508 (2)1.04583 (17)0.38140 (17)0.0491 (6)
C350.4526 (2)0.97297 (16)0.36598 (16)0.0510 (6)
H350.53590.99200.33520.061*
C360.2187 (2)1.19285 (17)0.38506 (19)0.0656 (7)
H36A0.23431.25570.43400.079*
H36B0.16571.21520.32560.079*
N10.96564 (15)0.64561 (11)0.32967 (11)0.0345 (4)
N40.62548 (19)0.78474 (14)0.32444 (15)0.0602 (5)
N21.1293 (2)0.89507 (15)0.06710 (14)0.0502 (5)
O20.86117 (13)0.58540 (10)0.03119 (9)0.0419 (4)
N30.56092 (19)0.27858 (15)0.09466 (16)0.0523 (5)
O41.02493 (14)0.66716 (10)0.50372 (10)0.0505 (4)
O50.34971 (16)1.15342 (11)0.35415 (14)0.0777 (5)
O60.14296 (15)1.10722 (12)0.43125 (13)0.0706 (5)
H3N0.542 (2)0.2270 (15)0.1319 (15)0.061 (8)*
H2N1.183 (2)0.9440 (15)0.0491 (15)0.057 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0826 (19)0.0578 (15)0.0642 (17)0.0007 (13)0.0017 (14)0.0310 (13)
C20.0529 (15)0.0500 (13)0.0481 (14)0.0009 (11)0.0011 (12)0.0188 (12)
C30.0382 (12)0.0331 (11)0.0402 (13)0.0051 (10)0.0070 (10)0.0088 (10)
C40.0409 (13)0.0360 (12)0.0385 (13)0.0013 (10)0.0005 (10)0.0051 (10)
C50.0401 (13)0.0424 (12)0.0325 (12)0.0044 (10)0.0059 (10)0.0037 (10)
C60.0332 (11)0.0316 (11)0.0309 (12)0.0044 (9)0.0010 (9)0.0049 (9)
C70.0339 (12)0.0315 (11)0.0350 (12)0.0006 (10)0.0021 (10)0.0059 (10)
C80.0384 (12)0.0409 (12)0.0331 (12)0.0024 (10)0.0029 (9)0.0082 (10)
C90.0613 (16)0.0547 (14)0.0579 (15)0.0132 (12)0.0068 (12)0.0092 (12)
C100.0357 (12)0.0355 (11)0.0283 (11)0.0048 (10)0.0024 (9)0.0050 (9)
C110.0341 (12)0.0310 (11)0.0292 (11)0.0049 (9)0.0038 (9)0.0037 (9)
C120.0328 (12)0.0328 (11)0.0359 (12)0.0016 (9)0.0051 (10)0.0081 (10)
C130.0371 (12)0.0413 (12)0.0364 (12)0.0001 (10)0.0019 (10)0.0072 (10)
C140.0320 (12)0.0347 (12)0.0451 (13)0.0025 (10)0.0063 (10)0.0022 (11)
C150.0386 (12)0.0358 (12)0.0416 (13)0.0032 (10)0.0099 (10)0.0087 (11)
C160.0428 (13)0.0399 (12)0.0332 (12)0.0069 (10)0.0030 (10)0.0094 (10)
C170.0577 (15)0.0544 (14)0.0592 (16)0.0044 (12)0.0067 (12)0.0218 (13)
C180.0439 (14)0.0501 (14)0.0772 (18)0.0020 (12)0.0104 (13)0.0071 (13)
C190.0530 (16)0.0713 (17)0.116 (2)0.0197 (14)0.0203 (15)0.0078 (16)
C200.0331 (11)0.0314 (11)0.0320 (12)0.0027 (9)0.0007 (9)0.0059 (9)
C210.0434 (13)0.0459 (13)0.0393 (13)0.0090 (11)0.0005 (11)0.0042 (11)
C220.0435 (14)0.0530 (14)0.0571 (16)0.0172 (11)0.0045 (12)0.0016 (12)
C230.0416 (13)0.0510 (14)0.0588 (16)0.0122 (11)0.0117 (12)0.0073 (12)
C240.0492 (14)0.0470 (13)0.0370 (13)0.0040 (11)0.0079 (11)0.0058 (11)
C250.0361 (12)0.0316 (11)0.0321 (12)0.0000 (9)0.0002 (10)0.0066 (9)
C260.0401 (13)0.0342 (12)0.0346 (13)0.0024 (10)0.0028 (10)0.0058 (10)
C270.0482 (14)0.0399 (12)0.0443 (13)0.0117 (11)0.0080 (11)0.0056 (10)
C280.0477 (15)0.0549 (15)0.0834 (19)0.0167 (12)0.0039 (13)0.0004 (13)
C290.0504 (15)0.0536 (14)0.0631 (17)0.0079 (12)0.0034 (13)0.0074 (13)
C300.0440 (14)0.0455 (13)0.0439 (14)0.0069 (11)0.0032 (11)0.0007 (11)
C310.0527 (15)0.0509 (14)0.0539 (15)0.0005 (12)0.0080 (12)0.0064 (12)
C320.0485 (15)0.0524 (15)0.0676 (17)0.0009 (12)0.0174 (13)0.0056 (13)
C330.0404 (14)0.0482 (14)0.0617 (16)0.0082 (12)0.0063 (12)0.0073 (12)
C340.0462 (15)0.0432 (14)0.0579 (16)0.0008 (12)0.0061 (12)0.0008 (12)
C350.0411 (14)0.0562 (15)0.0562 (15)0.0040 (12)0.0075 (11)0.0027 (12)
C360.0593 (17)0.0528 (15)0.087 (2)0.0119 (13)0.0100 (14)0.0092 (14)
N10.0379 (10)0.0356 (9)0.0309 (10)0.0095 (8)0.0021 (8)0.0032 (8)
N40.0460 (12)0.0657 (13)0.0716 (15)0.0197 (10)0.0092 (11)0.0086 (11)
N20.0550 (13)0.0457 (13)0.0504 (13)0.0078 (11)0.0064 (10)0.0197 (11)
O20.0443 (9)0.0436 (8)0.0374 (8)0.0103 (7)0.0093 (7)0.0154 (7)
N30.0471 (12)0.0488 (13)0.0613 (14)0.0095 (10)0.0016 (10)0.0159 (12)
O40.0631 (10)0.0582 (9)0.0303 (8)0.0083 (8)0.0046 (7)0.0029 (7)
O50.0602 (11)0.0485 (10)0.1288 (16)0.0102 (9)0.0299 (11)0.0207 (10)
O60.0518 (10)0.0517 (10)0.1091 (15)0.0076 (8)0.0208 (10)0.0020 (10)
Geometric parameters (Å, º) top
C1—C21.522 (2)C19—H19A0.9600
C1—H1A0.9600C19—H19B0.9600
C1—H1B0.9600C19—H19C0.9600
C1—H1C0.9600C20—C251.380 (2)
C2—N21.440 (2)C20—C211.385 (2)
C2—H2A0.9700C21—C221.384 (3)
C2—H2B0.9700C21—H210.9300
C3—C81.386 (2)C22—C231.394 (3)
C3—N21.389 (2)C22—H220.9300
C3—C41.413 (3)C23—C241.379 (3)
C4—C51.377 (2)C23—H230.9300
C4—C91.511 (2)C24—C251.382 (2)
C5—C61.404 (2)C24—H240.9300
C5—H50.9300C25—C261.486 (2)
C6—C71.377 (2)C26—O41.227 (2)
C6—C101.519 (2)C26—N11.360 (2)
C7—O21.3821 (19)C27—N11.456 (2)
C7—C81.391 (2)C27—C281.504 (2)
C8—H80.9300C27—H27A0.9700
C9—H9A0.9600C27—H27B0.9700
C9—H9B0.9600C28—N41.475 (2)
C9—H9C0.9600C28—H28A0.9700
C10—N11.504 (2)C28—H28B0.9700
C10—C201.521 (2)C29—N41.251 (2)
C10—C111.525 (2)C29—C301.476 (3)
C11—C121.375 (2)C29—H290.9300
C11—C161.405 (2)C30—C311.373 (2)
C12—O21.3850 (19)C30—C351.409 (2)
C12—C131.389 (2)C31—C321.393 (3)
C13—C141.391 (2)C31—H310.9300
C13—H130.9300C32—C331.351 (2)
C14—N31.388 (2)C32—H320.9300
C14—C151.415 (3)C33—C341.380 (2)
C15—C161.378 (2)C33—O61.386 (2)
C15—C171.513 (2)C34—C351.365 (3)
C16—H160.9300C34—O51.388 (2)
C17—H17A0.9600C35—H350.9300
C17—H17B0.9600C36—O61.423 (2)
C17—H17C0.9600C36—O51.427 (2)
C18—N31.447 (3)C36—H36A0.9700
C18—C191.517 (2)C36—H36B0.9700
C18—H18A0.9700N2—H2N0.790 (17)
C18—H18B0.9700N3—H3N0.836 (17)
C2—C1—H1A109.5H19A—C19—H19C109.5
C2—C1—H1B109.5H19B—C19—H19C109.5
H1A—C1—H1B109.5C25—C20—C21120.81 (18)
C2—C1—H1C109.5C25—C20—C10110.72 (16)
H1A—C1—H1C109.5C21—C20—C10128.47 (18)
H1B—C1—H1C109.5C22—C21—C20117.94 (19)
N2—C2—C1110.27 (17)C22—C21—H21121.0
N2—C2—H2A109.6C20—C21—H21121.0
C1—C2—H2A109.6C21—C22—C23121.21 (19)
N2—C2—H2B109.6C21—C22—H22119.4
C1—C2—H2B109.6C23—C22—H22119.4
H2A—C2—H2B108.1C24—C23—C22120.3 (2)
C8—C3—N2121.31 (19)C24—C23—H23119.8
C8—C3—C4119.48 (17)C22—C23—H23119.8
N2—C3—C4119.21 (18)C23—C24—C25118.43 (19)
C5—C4—C3118.24 (18)C23—C24—H24120.8
C5—C4—C9121.26 (18)C25—C24—H24120.8
C3—C4—C9120.50 (17)C20—C25—C24121.28 (18)
C4—C5—C6123.46 (18)C20—C25—C26109.15 (17)
C4—C5—H5118.3C24—C25—C26129.45 (19)
C6—C5—H5118.3O4—C26—N1126.31 (19)
C7—C6—C5116.48 (16)O4—C26—C25127.68 (19)
C7—C6—C10122.18 (17)N1—C26—C25105.97 (17)
C5—C6—C10121.29 (17)N1—C27—C28115.78 (15)
C6—C7—O2123.60 (16)N1—C27—H27A108.3
C6—C7—C8122.26 (18)C28—C27—H27A108.3
O2—C7—C8114.13 (17)N1—C27—H27B108.3
C3—C8—C7120.05 (18)C28—C27—H27B108.3
C3—C8—H8120.0H27A—C27—H27B107.4
C7—C8—H8120.0N4—C28—C27107.44 (16)
C4—C9—H9A109.5N4—C28—H28A110.2
C4—C9—H9B109.5C27—C28—H28A110.2
H9A—C9—H9B109.5N4—C28—H28B110.2
C4—C9—H9C109.5C27—C28—H28B110.2
H9A—C9—H9C109.5H28A—C28—H28B108.5
H9B—C9—H9C109.5N4—C29—C30125.0 (2)
N1—C10—C6111.05 (14)N4—C29—H29117.5
N1—C10—C2099.76 (14)C30—C29—H29117.5
C6—C10—C20112.95 (15)C31—C30—C35120.1 (2)
N1—C10—C11109.94 (14)C31—C30—C29118.63 (19)
C6—C10—C11110.04 (15)C35—C30—C29121.19 (19)
C20—C10—C11112.71 (14)C30—C31—C32122.9 (2)
C12—C11—C16116.36 (17)C30—C31—H31118.6
C12—C11—C10122.45 (16)C32—C31—H31118.6
C16—C11—C10121.10 (17)C33—C32—C31115.79 (19)
C11—C12—O2123.13 (17)C33—C32—H32122.1
C11—C12—C13122.70 (17)C31—C32—H32122.1
O2—C12—C13114.16 (17)C32—C33—C34122.6 (2)
C12—C13—C14120.03 (19)C32—C33—O6127.6 (2)
C12—C13—H13120.0C34—C33—O6109.75 (19)
C14—C13—H13120.0C35—C34—C33122.3 (2)
N3—C14—C13121.38 (19)C35—C34—O5128.24 (19)
N3—C14—C15119.65 (18)C33—C34—O5109.46 (19)
C13—C14—C15118.97 (18)C34—C35—C30116.26 (19)
C16—C15—C14118.74 (17)C34—C35—H35121.9
C16—C15—C17120.40 (19)C30—C35—H35121.9
C14—C15—C17120.86 (18)O6—C36—O5108.36 (16)
C15—C16—C11123.19 (18)O6—C36—H36A110.0
C15—C16—H16118.4O5—C36—H36A110.0
C11—C16—H16118.4O6—C36—H36B110.0
C15—C17—H17A109.5O5—C36—H36B110.0
C15—C17—H17B109.5H36A—C36—H36B108.4
H17A—C17—H17B109.5C26—N1—C27122.31 (16)
C15—C17—H17C109.5C26—N1—C10114.23 (15)
H17A—C17—H17C109.5C27—N1—C10122.72 (15)
H17B—C17—H17C109.5C29—N4—C28116.83 (19)
N3—C18—C19110.73 (17)C3—N2—C2122.46 (19)
N3—C18—H18A109.5C3—N2—H2N116.6 (15)
C19—C18—H18A109.5C2—N2—H2N119.4 (15)
N3—C18—H18B109.5C7—O2—C12118.22 (14)
C19—C18—H18B109.5C14—N3—C18123.18 (18)
H18A—C18—H18B108.1C14—N3—H3N117.7 (15)
C18—C19—H19A109.5C18—N3—H3N119.1 (15)
C18—C19—H19B109.5C34—O5—C36106.19 (15)
H19A—C19—H19B109.5C33—O6—C36106.24 (16)
C18—C19—H19C109.5
C8—C3—C4—C51.0 (3)C10—C20—C25—C24178.84 (15)
N2—C3—C4—C5178.93 (17)C21—C20—C25—C26176.84 (15)
C8—C3—C4—C9179.32 (17)C10—C20—C25—C262.4 (2)
N2—C3—C4—C90.7 (3)C23—C24—C25—C200.6 (3)
C3—C4—C5—C60.6 (3)C23—C24—C25—C26174.98 (17)
C9—C4—C5—C6179.08 (17)C20—C25—C26—O4178.01 (18)
C4—C5—C6—C71.2 (3)C24—C25—C26—O42.0 (3)
C4—C5—C6—C10176.25 (17)C20—C25—C26—N10.2 (2)
C5—C6—C7—O2179.61 (15)C24—C25—C26—N1175.78 (18)
C10—C6—C7—O22.2 (3)N1—C27—C28—N4175.74 (17)
C5—C6—C7—C80.3 (3)N4—C29—C30—C31166.7 (2)
C10—C6—C7—C8177.18 (16)N4—C29—C30—C3511.4 (4)
N2—C3—C8—C7178.01 (17)C35—C30—C31—C321.4 (3)
C4—C3—C8—C71.9 (3)C29—C30—C31—C32176.7 (2)
C6—C7—C8—C31.3 (3)C30—C31—C32—C330.3 (3)
O2—C7—C8—C3178.12 (15)C31—C32—C33—C340.8 (3)
C7—C6—C10—N1115.91 (19)C31—C32—C33—O6178.7 (2)
C5—C6—C10—N161.4 (2)C32—C33—C34—C350.8 (4)
C7—C6—C10—C20132.98 (18)O6—C33—C34—C35178.8 (2)
C5—C6—C10—C2049.7 (2)C32—C33—C34—O5179.7 (2)
C7—C6—C10—C116.1 (2)O6—C33—C34—O50.1 (3)
C5—C6—C10—C11176.62 (16)C33—C34—C35—C300.4 (3)
N1—C10—C11—C12115.71 (19)O5—C34—C35—C30178.4 (2)
C6—C10—C11—C126.9 (2)C31—C30—C35—C341.4 (3)
C20—C10—C11—C12133.97 (18)C29—C30—C35—C34176.7 (2)
N1—C10—C11—C1660.5 (2)O4—C26—N1—C2710.4 (3)
C6—C10—C11—C16176.87 (15)C25—C26—N1—C27167.46 (14)
C20—C10—C11—C1649.8 (2)O4—C26—N1—C10179.26 (17)
C16—C11—C12—O2179.68 (15)C25—C26—N1—C102.92 (19)
C10—C11—C12—O23.9 (3)C28—C27—N1—C26110.2 (2)
C16—C11—C12—C131.5 (3)C28—C27—N1—C1080.2 (2)
C10—C11—C12—C13174.94 (16)C6—C10—N1—C26123.48 (17)
C11—C12—C13—C141.1 (3)C20—C10—N1—C264.13 (18)
O2—C12—C13—C14179.95 (15)C11—C10—N1—C26114.50 (17)
C12—C13—C14—N3179.83 (17)C6—C10—N1—C2746.8 (2)
C12—C13—C14—C150.4 (3)C20—C10—N1—C27166.20 (14)
N3—C14—C15—C16179.57 (17)C11—C10—N1—C2775.17 (19)
C13—C14—C15—C160.1 (3)C30—C29—N4—C28179.9 (2)
N3—C14—C15—C170.7 (3)C27—C28—N4—C29133.9 (2)
C13—C14—C15—C17179.81 (16)C8—C3—N2—C26.7 (3)
C14—C15—C16—C110.5 (3)C4—C3—N2—C2173.21 (19)
C17—C15—C16—C11179.76 (16)C1—C2—N2—C3172.91 (18)
C12—C11—C16—C151.2 (3)C6—C7—O2—C121.7 (2)
C10—C11—C16—C15175.26 (17)C8—C7—O2—C12178.86 (15)
N1—C10—C20—C253.82 (18)C11—C12—O2—C70.9 (2)
C6—C10—C20—C25121.76 (17)C13—C12—O2—C7179.80 (15)
C11—C10—C20—C25112.75 (17)C13—C14—N3—C183.1 (3)
N1—C10—C20—C21175.41 (17)C15—C14—N3—C18176.40 (19)
C6—C10—C20—C2157.5 (2)C19—C18—N3—C14179.95 (18)
C11—C10—C20—C2168.0 (2)C35—C34—O5—C36178.7 (2)
C25—C20—C21—C221.6 (3)C33—C34—O5—C360.2 (3)
C10—C20—C21—C22177.57 (17)O6—C36—O5—C340.2 (3)
C20—C21—C22—C231.7 (3)C32—C33—O6—C36179.5 (2)
C21—C22—C23—C240.7 (3)C34—C33—O6—C360.0 (3)
C22—C23—C24—C250.5 (3)O5—C36—O6—C330.2 (2)
C21—C20—C25—C240.5 (3)

Experimental details

Crystal data
Chemical formulaC36H36N4O4
Mr588.69
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.561 (4), 12.262 (5), 13.005 (6)
α, β, γ (°)93.623 (8), 92.078 (8), 92.827 (7)
V3)1518.5 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.32 × 0.27
Data collection
DiffractometerBruker SMART CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.971, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
8102, 5606, 3838
Rint0.016
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.069, 1.83
No. of reflections5606
No. of parameters409
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.25

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Xuchang University for financial support.

References

First citationBruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, W.-J., Sun, D., Su, B.-Y., Wang, S.-P. & Zheng, H. (2009). Acta Cryst. E65, o1464.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKo, S.-K., Yang, Y.-K., Tae, J. & Shin, I. (2006). J. Am. Chem. Soc. 128, 14150–14155.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKwon, J. Y., Jang, Y. J., Lee, Y. J., Kim, K. M., Seo, M. S., Nam, W. & Yoon, I. (2006). J. Am. Chem. Soc. 127, 10107–10111.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, M.-Z. & Peng, X.-J. (2008). Acta Cryst. E64, o1645.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, D., Huang, W., Duan, C.-Y., Lin, Z.-H. & Meng, Q.-J. (2007). Inorg. Chem. 46, 1538–1540.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, L.-Z., Peng, X.-J., Gao, S. & Fan, J.-L. (2008). Acta Cryst. E64, o403.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds