organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Bis(2-meth­oxy­lstyr­yl)biphen­yl

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 24 June 2009; accepted 9 July 2009; online 18 July 2009)

The title compound, C30H26O2, was prepared by the reaction of a Wittig reagent and 2-methoxy­benzaldehyde. The mol­ecule lies about an inversion centre located at the midpoint of the C—C bond between the inner benzene rings. The crystal structure is stabilized by C—H⋯π inter­actions.

Related literature

For the optical properties of ethyl­ene biphenyls, see: Song et al. (2003[Song, H. C., Xu, X. H. & Liu, G. R. (2003). Chin. Chem. Res. 14, 1-5.]). For comparative bond lengths, see: Trueblood et al. (1982[Trueblood, K., Mirsky, K., Maverick, E., Knobler, C. & Grossenbacher, L. (1982). Acta Cryst. B38, 2428-2435.]).

[Scheme 1]

Experimental

Crystal data
  • C30H26O2

  • Mr = 418.51

  • Monoclinic, P 21 /c

  • a = 15.499 (3) Å

  • b = 5.5050 (11) Å

  • c = 13.445 (3) Å

  • β = 98.61 (3)°

  • V = 1134.2 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 2541 measured reflections

  • 2431 independent reflections

  • 1144 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.218

  • S = 1.01

  • 2431 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1CCg1i 0.96 2.76 3.611 (3) 149
C15—H15ACg2ii 0.93 2.91 3.643 (3) 137
Symmetry codes: (i) x, y-1, z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of the C2–C7 and C10–C15 rings,respectively.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ethylene biphenyl have received considerable attention in the literature. They are attractive from several points of view, such as the optics characteristic. (Song et al., 2003). As part of our search for new ethylene biphenyl compounds we synthesized the title compound (I), and describe its structure here.

As shown in Fig. 1, the molecule has an inversion centre lied on the midpoint of the C—C bond between the inner benzene rings. The C8—C9 bond length of 1.314 (4)Å is comparable with C—C double bond [1.336 (2) Å] reported (Trueblood et al., 1982).

In the structure, there is no classcial hydrogen bonds. The crystal structure is stabilized by C—H···π interactions (Table 1).

Related literature top

For the optical properties of ethylene biphenyls, see: Song et al. (2003). For comparison bond lengths, see: Trueblood et al. (1982). Cg1 and Cg2 are the centroids of the C2–C7 and C10–C15 rings,respectively.

Experimental top

A mixture of the Wittig-reagent (0.1 mol), and 2-methoxybenzaldehyde (0.2 mol) was stirred in refluxing N,N-dimethylformamide (20 mL) for 4 h to afford the title compound (0.084 mol, yield 84%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H = 0.93 - 0.96 Å, and with Uiso(H) =1.2 or 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
4,4'-Bis(2-methoxylstyryl)biphenyl top
Crystal data top
C30H26O2F(000) = 444
Mr = 418.51Dx = 1.225 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 987 reflections
a = 15.499 (3) Åθ = 2.2–27.5°
b = 5.5050 (11) ŵ = 0.08 mm1
c = 13.445 (3) ÅT = 293 K
β = 98.61 (3)°Block, yellow
V = 1134.2 (4) Å30.25 × 0.20 × 0.18 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1144 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 27.0°, θmin = 1.3°
ϕ and ω scansh = 1818
2541 measured reflectionsk = 60
2431 independent reflectionsl = 160
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.218 w = 1/[σ2(Fo2) + (0.1165P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2431 reflectionsΔρmax = 0.22 e Å3
146 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.045 (8)
Crystal data top
C30H26O2V = 1134.2 (4) Å3
Mr = 418.51Z = 2
Monoclinic, P21/cMo Kα radiation
a = 15.499 (3) ŵ = 0.08 mm1
b = 5.5050 (11) ÅT = 293 K
c = 13.445 (3) Å0.25 × 0.20 × 0.18 mm
β = 98.61 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1144 reflections with I > 2σ(I)
2541 measured reflectionsRint = 0.031
2431 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.218H-atom parameters constrained
S = 1.01Δρmax = 0.22 e Å3
2431 reflectionsΔρmin = 0.18 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.37628 (14)0.1134 (4)0.17470 (14)0.0684 (7)
C10.4420 (2)0.0626 (6)0.1680 (2)0.0738 (11)
H1A0.44910.16270.22710.111*
H1B0.49610.01780.16270.111*
H1C0.42540.16190.10960.111*
C20.35652 (18)0.2759 (5)0.09673 (19)0.0493 (7)
C30.3997 (2)0.2830 (6)0.0136 (2)0.0602 (9)
H3A0.44420.17270.00820.072*
C40.3770 (2)0.4529 (7)0.0611 (2)0.0665 (10)
H4A0.40660.45680.11640.080*
C50.3114 (2)0.6160 (6)0.0545 (2)0.0625 (9)
H5A0.29630.73020.10510.075*
C60.26746 (19)0.6097 (6)0.0283 (2)0.0565 (8)
H6A0.22330.72160.03270.068*
C70.28816 (16)0.4391 (5)0.10519 (19)0.0456 (7)
C80.24047 (17)0.4232 (5)0.19277 (19)0.0497 (8)
H8A0.25370.29110.23540.060*
C90.18161 (18)0.5755 (5)0.2166 (2)0.0493 (8)
H9A0.17050.71200.17590.059*
C100.13109 (17)0.5531 (5)0.30137 (19)0.0434 (7)
C110.1426 (2)0.3639 (6)0.3705 (2)0.0616 (9)
H11A0.18510.24720.36540.074*
C120.0920 (2)0.3457 (5)0.4468 (2)0.0615 (9)
H12A0.10160.21590.49140.074*
C130.02809 (16)0.5122 (5)0.45942 (19)0.0406 (6)
C140.0180 (2)0.7035 (5)0.3911 (2)0.0556 (8)
H14A0.02390.82160.39700.067*
C150.0683 (2)0.7237 (6)0.3145 (2)0.0576 (9)
H15A0.05960.85530.27070.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0824 (16)0.0795 (15)0.0477 (12)0.0305 (13)0.0238 (11)0.0099 (12)
C10.083 (2)0.081 (3)0.057 (2)0.027 (2)0.0114 (17)0.0030 (18)
C20.0517 (16)0.0613 (18)0.0365 (15)0.0004 (15)0.0114 (12)0.0031 (14)
C30.0571 (18)0.082 (2)0.0457 (17)0.0071 (17)0.0228 (15)0.0038 (17)
C40.0594 (19)0.104 (3)0.0409 (17)0.0055 (19)0.0235 (14)0.0008 (18)
C50.0603 (19)0.089 (2)0.0393 (16)0.0015 (19)0.0110 (14)0.0128 (17)
C60.0491 (16)0.075 (2)0.0465 (16)0.0034 (16)0.0091 (13)0.0075 (16)
C70.0404 (15)0.063 (2)0.0350 (14)0.0034 (13)0.0107 (11)0.0011 (13)
C80.0475 (16)0.065 (2)0.0393 (15)0.0066 (15)0.0136 (12)0.0041 (14)
C90.0523 (17)0.0556 (19)0.0423 (15)0.0007 (15)0.0142 (12)0.0004 (13)
C100.0411 (15)0.0501 (17)0.0397 (15)0.0015 (13)0.0081 (12)0.0064 (13)
C110.0591 (18)0.065 (2)0.067 (2)0.0249 (16)0.0306 (16)0.0138 (17)
C120.067 (2)0.063 (2)0.0608 (19)0.0243 (17)0.0318 (16)0.0209 (16)
C130.0403 (14)0.0462 (15)0.0357 (13)0.0002 (12)0.0078 (10)0.0044 (12)
C140.0585 (18)0.0579 (19)0.0554 (17)0.0198 (15)0.0248 (14)0.0066 (15)
C150.0662 (19)0.062 (2)0.0490 (16)0.0172 (16)0.0235 (15)0.0154 (15)
Geometric parameters (Å, º) top
O1—C21.377 (3)C8—C91.314 (4)
O1—C11.419 (4)C8—H8A0.9300
C1—H1A0.9600C9—C101.482 (4)
C1—H1B0.9600C9—H9A0.9300
C1—H1C0.9600C10—C151.383 (4)
C2—C31.386 (4)C10—C111.389 (4)
C2—C71.407 (4)C11—C121.386 (4)
C3—C41.379 (4)C11—H11A0.9300
C3—H3A0.9300C12—C131.379 (4)
C4—C51.370 (4)C12—H12A0.9300
C4—H4A0.9300C13—C141.391 (4)
C5—C61.390 (4)C13—C13i1.500 (5)
C5—H5A0.9300C14—C151.387 (4)
C6—C71.398 (4)C14—H14A0.9300
C6—H6A0.9300C15—H15A0.9300
C7—C81.484 (3)
C2—O1—C1118.4 (2)C9—C8—C7127.1 (3)
O1—C1—H1A109.5C9—C8—H8A116.5
O1—C1—H1B109.5C7—C8—H8A116.5
H1A—C1—H1B109.5C8—C9—C10126.9 (3)
O1—C1—H1C109.5C8—C9—H9A116.5
H1A—C1—H1C109.5C10—C9—H9A116.5
H1B—C1—H1C109.5C15—C10—C11116.5 (2)
O1—C2—C3123.6 (3)C15—C10—C9120.3 (3)
O1—C2—C7116.0 (2)C11—C10—C9123.2 (2)
C3—C2—C7120.5 (3)C12—C11—C10121.3 (3)
C4—C3—C2120.4 (3)C12—C11—H11A119.4
C4—C3—H3A119.8C10—C11—H11A119.4
C2—C3—H3A119.8C13—C12—C11122.7 (3)
C5—C4—C3120.5 (3)C13—C12—H12A118.7
C5—C4—H4A119.7C11—C12—H12A118.7
C3—C4—H4A119.7C12—C13—C14115.7 (2)
C4—C5—C6119.5 (3)C12—C13—C13i122.4 (3)
C4—C5—H5A120.2C14—C13—C13i121.8 (3)
C6—C5—H5A120.2C15—C14—C13122.1 (3)
C5—C6—C7121.6 (3)C15—C14—H14A119.0
C5—C6—H6A119.2C13—C14—H14A119.0
C7—C6—H6A119.2C10—C15—C14121.7 (3)
C6—C7—C2117.5 (2)C10—C15—H15A119.2
C6—C7—C8122.7 (3)C14—C15—H15A119.2
C2—C7—C8119.8 (3)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···Cg1ii0.962.763.611 (3)149
C15—H15A···Cg2iii0.932.913.643 (3)137
Symmetry codes: (ii) x, y1, z; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC30H26O2
Mr418.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.499 (3), 5.5050 (11), 13.445 (3)
β (°) 98.61 (3)
V3)1134.2 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2541, 2431, 1144
Rint0.031
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.218, 1.01
No. of reflections2431
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.18

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···Cg1i0.962.763.611 (3)149
C15—H15A···Cg2ii0.932.913.643 (3)137
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z+1/2.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, H. C., Xu, X. H. & Liu, G. R. (2003). Chin. Chem. Res. 14, 1–5.  CAS Google Scholar
First citationTrueblood, K., Mirsky, K., Maverick, E., Knobler, C. & Grossenbacher, L. (1982). Acta Cryst. B38, 2428–2435.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds