organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-[(Bi­phenyl-4,4′-di­yl)di(ethene-1,2-di­yl)]di­benzene­sulfonic acid–4-methyl­piperidine–water (1/2/2)

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 24 June 2009; accepted 9 July 2009; online 18 July 2009)

The title compound, C28H22O6S2·2C6H13N·2H2O, was prepared by the reaction of a Wittig reagent and 2-formyl­benzene­sulfonic acid. The main molecule lies about an inversion centre at the midpoint of the C—C bond between the inner benzene rings. The mol­ecular conformation is stabilized by intramolecular hydrogen bonds. The crystal structure is further stabilized by O—H⋯O and N—H⋯O hydrogen-bonding inter­actions.

Related literature

For the optical properties of ethyl­ene biphenyls, see: Song et al. (2003[Song, H. C., Xu, X. H. & Liu, G. R. (2003). Chin. Chem. Res. 14, 1-5.]). For comparative bond lengths, see: Trueblood et al. (1982[Trueblood, K., Mirsky, K., Maverick, E., Knobler, C. & Grossenbacher, L. (1982). Acta Cryst. B38, 2428-2435.]).

[Scheme 1]

Experimental

Crystal data
  • C28H22O6S2·2(C6H13N)·2(H2O)

  • Mr = 752.96

  • Monoclinic, P 21 /c

  • a = 14.852 (3) Å

  • b = 9.7240 (19) Å

  • c = 14.765 (3) Å

  • β = 109.76 (3)°

  • V = 2006.8 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.26 × 0.21 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 4436 measured reflections

  • 4264 independent reflections

  • 1779 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.204

  • S = 1.01

  • 4264 reflections

  • 243 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1⋯O1 0.94 (6) 1.95 (6) 2.881 (5) 171 (6)
N2—H2C⋯O1Wi 0.86 2.23 2.767 (4) 120
N2—H2C⋯O3ii 0.86 2.28 2.787 (5) 117
C2—H2B⋯O3 0.93 2.42 2.838 (5) 107
C7—H7A⋯O2 0.93 2.42 3.103 (5) 130
Symmetry codes: (i) -x, -y+1, -z; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ethylene biphenyl have received considerable attention in the literature. They are attractive from several points of view, such as the optics characteristic. (Song et al., 2003). As part of our search for new ethylene biphenyl compounds we synthesized the title compound (I), and describe its structure here.

Main group of the title molecule in Fig. 1 has an inversion centre lied on the midpoint of the C—C bond between the inner benzene rings. The C7—C8 bond length of 1.326 (5)Å is comparable with C—C double bond [1.336 (2) Å] reported (Trueblood et al.,1982).

The molecular conformation is stabilized by C—H···O hydrogen bonds. The crystal structure is further stabilized by N—H···O hydrogen bonding interactions (Table 1).

Related literature top

For the optical properties of ethylene biphenyls, see: Song et al. (2003). For comparison bond lengths, see: Trueblood et al. (1982).

Experimental top

A mixture of the Wittig-reagent (0.1 mol), and 2-formylbenzenesulfonic acid (0.2 mol) was stirred in refluxing 4-methylpiperidine (20 mL) for 4 h to afford the title compound (0.084 mol, yield 84%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement top

The H atoms of the water molecule were found difference Fourier map and refined freely. The other atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H = 0.93 - 0.97 Å O–H = 0.82 Å and with Uiso(H)=1.2–1.5Ueq (C, O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
2,2'-[(Biphenyl-4,4'-diyl)di(ethene-1,2-diyl)]dibenzenesulfonic acid–4-methylpiperidine–water (1/2/2) top
Crystal data top
C28H22O6S2·2(C6H13N)·2(H2O)Z = 2
Mr = 752.96F(000) = 804
Monoclinic, P21/cDx = 1.246 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.852 (3) ŵ = 0.19 mm1
b = 9.7240 (19) ÅT = 293 K
c = 14.765 (3) ÅBlock, yellow
β = 109.76 (3)°0.26 × 0.21 × 0.18 mm
V = 2006.8 (7) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1779 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 27.0°, θmin = 1.5°
ϕ and ω scansh = 1717
4436 measured reflectionsk = 110
4264 independent reflectionsl = 017
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.204H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0935P)2 + 0.2207P]
where P = (Fo2 + 2Fc2)/3
4264 reflections(Δ/σ)max < 0.001
243 parametersΔρmax = 0.34 e Å3
1 restraintΔρmin = 0.27 e Å3
Crystal data top
C28H22O6S2·2(C6H13N)·2(H2O)V = 2006.8 (7) Å3
Mr = 752.96Z = 2
Monoclinic, P21/cMo Kα radiation
a = 14.852 (3) ŵ = 0.19 mm1
b = 9.7240 (19) ÅT = 293 K
c = 14.765 (3) Å0.26 × 0.21 × 0.18 mm
β = 109.76 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1779 reflections with I > 2σ(I)
4436 measured reflectionsRint = 0.026
4264 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0601 restraint
wR(F2) = 0.204H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.34 e Å3
4264 reflectionsΔρmin = 0.27 e Å3
243 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.16287 (7)0.72108 (11)0.45278 (7)0.0650 (4)
O10.11710 (19)0.6177 (3)0.49284 (19)0.0777 (8)
O20.2213 (2)0.8160 (3)0.5239 (2)0.0963 (10)
H2A0.18720.86100.54640.144*
O30.0962 (2)0.7896 (3)0.3708 (2)0.0946 (10)
C10.2421 (2)0.6277 (4)0.4076 (2)0.0547 (9)
C20.2274 (3)0.6354 (4)0.3096 (3)0.0685 (11)
H2B0.17890.69090.27040.082*
C30.2841 (3)0.5616 (5)0.2699 (3)0.0813 (13)
H3B0.27440.56890.20450.098*
C40.3556 (3)0.4763 (5)0.3275 (3)0.0797 (13)
H4A0.39180.42290.30040.096*
C50.3726 (3)0.4712 (4)0.4253 (3)0.0673 (11)
H5A0.42220.41640.46370.081*
C60.3174 (2)0.5464 (4)0.4686 (2)0.0549 (9)
C70.3396 (2)0.5464 (4)0.5737 (2)0.0572 (10)
H7A0.30730.61080.59790.069*
C80.4005 (2)0.4653 (4)0.6378 (3)0.0593 (10)
H8A0.42960.39580.61430.071*
C90.4261 (2)0.4755 (4)0.7428 (2)0.0527 (9)
C100.4910 (3)0.3842 (5)0.8026 (3)0.0808 (13)
H10A0.51640.31470.77520.097*
C110.5191 (3)0.3931 (5)0.9011 (3)0.0785 (13)
H11A0.56270.32920.93820.094*
C120.4847 (2)0.4936 (4)0.9467 (2)0.0502 (9)
C130.4184 (3)0.5858 (4)0.8868 (3)0.0680 (11)
H13A0.39270.65480.91420.082*
C140.3906 (3)0.5760 (4)0.7881 (3)0.0679 (11)
H14A0.34660.63900.75060.081*
C170.1822 (5)0.2643 (6)0.1068 (3)0.131 (2)
H17A0.12980.22620.12270.196*
H17B0.19700.35430.13460.196*
H17C0.23720.20600.13170.196*
C150.0653 (3)0.3594 (5)0.0460 (4)0.0913 (15)
H15A0.07490.44890.01520.110*
H15B0.01270.31500.03270.110*
C160.0386 (3)0.3788 (6)0.1540 (4)0.0992 (16)
H16A0.02160.29090.18630.119*
H16B0.01630.43940.17730.119*
N20.1191 (3)0.4378 (4)0.1755 (2)0.0859 (11)
H2C0.11670.51440.20530.103*
C180.2061 (4)0.3503 (5)0.1398 (3)0.0917 (14)
H18A0.25820.39270.15540.110*
H18B0.19350.26090.17060.110*
C190.2335 (3)0.3339 (5)0.0337 (3)0.0815 (13)
H19A0.25160.42290.00330.098*
H19B0.28900.27410.01110.098*
C200.1544 (3)0.2747 (4)0.0032 (3)0.0777 (12)
H20A0.14100.18150.02970.093*
O1W0.0458 (3)0.4739 (4)0.3645 (2)0.0939 (11)
H20.082 (3)0.537 (4)0.380 (3)0.074 (16)*
H10.009 (3)0.512 (7)0.410 (4)0.17 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0645 (6)0.0621 (6)0.0658 (6)0.0026 (6)0.0188 (5)0.0124 (6)
O10.0773 (18)0.080 (2)0.090 (2)0.0010 (15)0.0466 (16)0.0174 (16)
O20.101 (2)0.0657 (19)0.117 (2)0.0039 (17)0.0292 (19)0.0220 (18)
O30.090 (2)0.108 (2)0.0765 (19)0.0237 (19)0.0168 (16)0.0307 (18)
C10.048 (2)0.056 (2)0.054 (2)0.0167 (18)0.0110 (17)0.0052 (18)
C20.061 (2)0.084 (3)0.054 (2)0.018 (2)0.010 (2)0.009 (2)
C30.085 (3)0.105 (4)0.055 (3)0.030 (3)0.025 (2)0.006 (3)
C40.077 (3)0.096 (3)0.076 (3)0.024 (3)0.039 (2)0.019 (3)
C50.055 (2)0.085 (3)0.064 (3)0.007 (2)0.022 (2)0.001 (2)
C60.050 (2)0.060 (2)0.058 (2)0.0139 (18)0.0220 (18)0.0004 (18)
C70.056 (2)0.061 (2)0.055 (2)0.0001 (19)0.0205 (19)0.0048 (18)
C80.053 (2)0.067 (3)0.060 (2)0.0047 (19)0.0217 (18)0.003 (2)
C90.048 (2)0.059 (2)0.053 (2)0.0041 (18)0.0196 (17)0.0057 (19)
C100.094 (3)0.086 (3)0.063 (3)0.044 (3)0.027 (2)0.006 (2)
C110.091 (3)0.084 (3)0.057 (3)0.045 (3)0.021 (2)0.012 (2)
C120.0452 (19)0.053 (2)0.0534 (19)0.0041 (18)0.0180 (17)0.0099 (19)
C130.070 (3)0.070 (3)0.061 (3)0.028 (2)0.017 (2)0.001 (2)
C140.063 (2)0.073 (3)0.059 (3)0.025 (2)0.009 (2)0.011 (2)
C170.210 (7)0.108 (4)0.075 (3)0.012 (4)0.051 (4)0.012 (3)
C150.091 (3)0.081 (3)0.123 (4)0.013 (3)0.065 (3)0.010 (3)
C160.075 (3)0.100 (4)0.100 (4)0.001 (3)0.001 (3)0.000 (3)
N20.106 (3)0.077 (2)0.075 (2)0.001 (2)0.032 (2)0.020 (2)
C180.108 (4)0.088 (3)0.096 (4)0.005 (3)0.057 (3)0.003 (3)
C190.075 (3)0.077 (3)0.086 (3)0.016 (2)0.019 (2)0.010 (2)
C200.114 (4)0.055 (2)0.066 (3)0.001 (3)0.033 (2)0.001 (2)
O1W0.108 (3)0.106 (3)0.068 (2)0.000 (2)0.030 (2)0.0108 (19)
Geometric parameters (Å, º) top
S1—O31.442 (3)C12—C12i1.488 (6)
S1—O21.446 (3)C13—C141.377 (5)
S1—O11.447 (3)C13—H13A0.9300
S1—C11.784 (4)C14—H14A0.9300
O2—H2A0.8200C17—C201.537 (5)
C1—C21.392 (5)C17—H17A0.9600
C1—C61.417 (5)C17—H17B0.9600
C2—C31.378 (6)C17—H17C0.9600
C2—H2B0.9300C15—C201.504 (6)
C3—C41.389 (6)C15—C161.519 (6)
C3—H3B0.9300C15—H15A0.9700
C4—C51.379 (5)C15—H15B0.9700
C4—H4A0.9300C16—N21.455 (6)
C5—C61.404 (5)C16—H16A0.9700
C5—H5A0.9300C16—H16B0.9700
C6—C71.473 (5)N2—C181.487 (5)
C7—C81.326 (5)N2—H2C0.8600
C7—H7A0.9300C18—C191.488 (5)
C8—C91.469 (5)C18—H18A0.9700
C8—H8A0.9300C18—H18B0.9700
C9—C141.384 (5)C19—C201.508 (6)
C9—C101.387 (5)C19—H19A0.9700
C10—C111.373 (5)C19—H19B0.9700
C10—H10A0.9300C20—H20A0.9800
C11—C121.380 (5)O1W—H20.90 (4)
C11—H11A0.9300O1W—H10.94 (6)
C12—C131.402 (5)
O3—S1—O2112.82 (19)C12—C13—H13A119.4
O3—S1—O1112.34 (19)C13—C14—C9122.2 (3)
O2—S1—O1113.35 (19)C13—C14—H14A118.9
O3—S1—C1105.87 (18)C9—C14—H14A118.9
O2—S1—C1106.64 (17)C20—C17—H17A109.5
O1—S1—C1105.03 (16)C20—C17—H17B109.5
S1—O2—H2A109.5H17A—C17—H17B109.5
C2—C1—C6120.2 (4)C20—C17—H17C109.5
C2—C1—S1118.1 (3)H17A—C17—H17C109.5
C6—C1—S1121.7 (3)H17B—C17—H17C109.5
C3—C2—C1120.8 (4)C20—C15—C16113.0 (4)
C3—C2—H2B119.6C20—C15—H15A109.0
C1—C2—H2B119.6C16—C15—H15A109.0
C2—C3—C4120.0 (4)C20—C15—H15B109.0
C2—C3—H3B120.0C16—C15—H15B109.0
C4—C3—H3B120.0H15A—C15—H15B107.8
C5—C4—C3119.6 (4)N2—C16—C15109.6 (4)
C5—C4—H4A120.2N2—C16—H16A109.8
C3—C4—H4A120.2C15—C16—H16A109.8
C4—C5—C6122.0 (4)N2—C16—H16B109.8
C4—C5—H5A119.0C15—C16—H16B109.8
C6—C5—H5A119.0H16A—C16—H16B108.2
C5—C6—C1117.3 (3)C16—N2—C18112.2 (4)
C5—C6—C7121.5 (3)C16—N2—H2C123.9
C1—C6—C7121.2 (3)C18—N2—H2C123.9
C8—C7—C6127.4 (4)N2—C18—C19109.3 (3)
C8—C7—H7A116.3N2—C18—H18A109.8
C6—C7—H7A116.3C19—C18—H18A109.8
C7—C8—C9125.7 (4)N2—C18—H18B109.8
C7—C8—H8A117.2C19—C18—H18B109.8
C9—C8—H8A117.2H18A—C18—H18B108.3
C14—C9—C10116.1 (3)C18—C19—C20113.1 (4)
C14—C9—C8123.5 (3)C18—C19—H19A109.0
C10—C9—C8120.3 (3)C20—C19—H19A109.0
C11—C10—C9122.0 (4)C18—C19—H19B109.0
C11—C10—H10A119.0C20—C19—H19B109.0
C9—C10—H10A119.0H19A—C19—H19B107.8
C10—C11—C12122.1 (3)C15—C20—C19109.2 (3)
C10—C11—H11A118.9C15—C20—C17111.4 (4)
C12—C11—H11A118.9C19—C20—C17112.4 (4)
C11—C12—C13116.2 (3)C15—C20—H20A107.9
C11—C12—C12i123.0 (4)C19—C20—H20A107.9
C13—C12—C12i120.8 (4)C17—C20—H20A107.9
C14—C13—C12121.3 (3)H2—O1W—H190 (3)
C14—C13—H13A119.4
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1···O10.94 (6)1.95 (6)2.881 (5)171 (6)
N2—H2C···O1Wii0.862.232.767 (4)120
N2—H2C···O3iii0.862.282.787 (5)117
C2—H2B···O30.932.422.838 (5)107
C7—H7A···O20.932.423.103 (5)130
Symmetry codes: (ii) x, y+1, z; (iii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC28H22O6S2·2(C6H13N)·2(H2O)
Mr752.96
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.852 (3), 9.7240 (19), 14.765 (3)
β (°) 109.76 (3)
V3)2006.8 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.26 × 0.21 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4436, 4264, 1779
Rint0.026
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.204, 1.01
No. of reflections4264
No. of parameters243
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.27

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1···O10.94 (6)1.95 (6)2.881 (5)171 (6)
N2—H2C···O1Wi0.86002.23002.767 (4)120.00
N2—H2C···O3ii0.86002.28002.787 (5)117.00
C2—H2B···O30.93002.42002.838 (5)107.00
C7—H7A···O20.93002.42003.103 (5)130.00
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z1/2.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, H. C., Xu, X. H. & Liu, G. R. (2003). Chin. Chem. Res. 14, 1–5.  CAS Google Scholar
First citationTrueblood, K., Mirsky, K., Maverick, E., Knobler, C. & Grossenbacher, L. (1982). Acta Cryst. B38, 2428–2435.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds