organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N2,N2,N4,N4-Tetra­ethyl-6-{2-[(E)-1-(4-nitro­phen­yl)ethyl­­idene]hydrazino}-1,3,5-triazine-2,4-di­amine

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 1 July 2009; accepted 2 July 2009; online 11 July 2009)

The title compound, C19H28N8O2, was prepared by the reaction of N2,N2,N4,N4-tetra­ethyl-6-hydrazino-1,3,5-triazine-2,4-diamine and 1-(4-nitro­phen­yl)ethanone in ethanol at room temperature. The mol­ecular conformation is stabilized by intra­molecular C—H⋯N hydrogen-bonding inter­actions. There are also inter­molecular N—H⋯O hydrogen bonds, and C—H⋯π and ππ inter­actions, which help to stabilize the crystal structure. The centroid–centroid distance is 3.6172 (10) Å between adjacent benzene and 1,3,5-triazine rings.

Related literature

For the antimicrobial and anticancer applications of Schiff bases, see: Tarafder et al. (2000[Tarafder, M. T. H., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem. 25, 456-460.]); Deschamps et al. (2003[Deschamps, P., Kulkarni, P. P. & Sarkar, B. (2003). Inorg. Chem. 42, 7366-7368.]). For the ability of Schiff bases to form intramolecular hydrogen bonds by electron coupling between acid–base centers, see: Rozwadowski et al. (1999[Rozwadowski, Z., Majewski, E., Dziembowska, T. & Hansen, P. E. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 2809-2817.]). For a related structure, see: Jian et al. (2006[Jian, F.-F., Zhuang, R.-R., Wang, K.-F., Zhao, P.-S. & Xiao, H.-L. (2006). Acta Cryst. E62, o3198-o3199.]).

[Scheme 1]

Experimental

Crystal data
  • C19H28N8O2

  • Mr = 400.49

  • Monoclinic, P 21 /n

  • a = 12.333 (3) Å

  • b = 9.5286 (19) Å

  • c = 17.407 (4) Å

  • β = 92.12 (3)°

  • V = 2044.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.22 × 0.18 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 19318 measured reflections

  • 4667 independent reflections

  • 4054 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.104

  • S = 1.05

  • 4667 reflections

  • 278 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1i 0.868 (15) 2.491 (15) 3.2751 (15) 150.7 (13)
N3—H3A⋯O2i 0.868 (15) 2.474 (15) 3.2486 (15) 149.0 (13)
C2—H2C⋯N4 0.97 2.38 2.7252 (15) 100
C7—H7A⋯N5 0.97 2.39 2.7322 (16) 100
C15—H15A⋯N2 0.93 2.39 2.7128 (15) 100
C1—H1ACg2ii 0.96 2.91 3.7486 (16) 147
C7—H7BCg1iii 0.97 2.71 3.3835 (15) 127
Symmetry codes: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y-{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 and Cg2 are centroids of the N4–N6/ C9–C11 and C14–C19 rings, respectively.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have antimicrobial (Tarafder et al., 2000) and anticancer applications (Deschamps et al., 2003). The recent growing interest in Schiff bases is also due to their ability to form intramolecular hydrogen bonds by electron coupling between acid-base centers (Rozwadowski et al., 1999). The part of our research is to find Schiff base with higher biological activity, we sythesized the title compound (I) and report its crystal structure here.

In the crystal structure of compound (I) (Fig. 1), the dihedral angle formed by the C14 –C19 and N4–N6/C9–C11 rings was 10.76 (1)°. The CN bond length [1.2910 (17) Å] is in agreement with that observed before (Jian et al., 2006). There are intermolecular N—H···O hydrogen-bonds, C—H···π and ππ interactions to stabilize the crystal structure. The centroid–centroid distance iss 3.6172 (10) Å between the adjacent benzene and 1,3,5-triazine rings.

Related literature top

For related literature, see: Deschamps et al. (2003); Jian et al. (2006); Rozwadowski et al. (1999); Tarafder et al. (2000).

Experimental top

A mixture of N2,N2,N4,N4-tetraethyl-6-hydrazinyl-1,3,5-triazine-2,4-diamine (0.02 mol) and 1-(4-nitrophenyl)ethanone (0.02 mol) was stirred with ethanol (50 mL) at 298 K for 2 h, affording the title compound (6.40 g, yield 80.0%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement top

The title compound, C19H28N8O2, was prepared by the reaction of N2,N2,N4,N4-tetraethyl-6-hydrazino-1,3,5-triazine-2,4-diamine and 1-(4-nitrophenyl)ethanone with ethanol at room temperature. The molecular conformation is stabilized by intramolecular C—H···N hydrogen-bonding interactions. There are also intermolecular N—H···O hydrogen bonds, and C—H···π and ππ interactions, which help to stabilize the crystal structure. The centroid–centroid distance is 3.6172 (10) Å between adjacent benzene and 1,3,5-triazine rings.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
N2,N2,N4,N4-Tetraethyl-6-{2-[(E)- 1-(4-nitrophenyl)ethylidene]hydrazino}-1,3,5-triazine-2,4-diamine top
Crystal data top
C19H28N8O2F(000) = 856
Mr = 400.49Dx = 1.301 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4667 reflections
a = 12.333 (3) Åθ = 3.2–27.5°
b = 9.5286 (19) ŵ = 0.09 mm1
c = 17.407 (4) ÅT = 293 K
β = 92.12 (3)°Block, yellow
V = 2044.3 (7) Å30.22 × 0.18 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4054 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
ϕ and ω scansh = 1615
19318 measured reflectionsk = 1212
4667 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.6629P]
where P = (Fo2 + 2Fc2)/3
4667 reflections(Δ/σ)max = 0.001
278 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C19H28N8O2V = 2044.3 (7) Å3
Mr = 400.49Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.333 (3) ŵ = 0.09 mm1
b = 9.5286 (19) ÅT = 293 K
c = 17.407 (4) Å0.22 × 0.18 × 0.10 mm
β = 92.12 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4054 reflections with I > 2σ(I)
19318 measured reflectionsRint = 0.018
4667 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.35 e Å3
4667 reflectionsΔρmin = 0.24 e Å3
278 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N60.86798 (7)0.13524 (9)0.14238 (5)0.01620 (18)
O20.61084 (7)0.21575 (10)0.26492 (5)0.0282 (2)
O10.71950 (7)0.38030 (9)0.29988 (5)0.02543 (19)
N30.97484 (7)0.06303 (10)0.12715 (5)0.01717 (19)
N50.91414 (7)0.28722 (9)0.24899 (5)0.01601 (19)
N41.01161 (7)0.07162 (9)0.23260 (5)0.01529 (18)
N71.05089 (7)0.22043 (9)0.33480 (5)0.01625 (19)
N20.91687 (7)0.09648 (9)0.06200 (5)0.01611 (19)
C190.75621 (8)0.27251 (11)0.18232 (6)0.0168 (2)
N10.69125 (7)0.29130 (10)0.25356 (5)0.0200 (2)
N80.77480 (7)0.34066 (10)0.16191 (5)0.01862 (19)
C150.79067 (8)0.14525 (11)0.06617 (6)0.0180 (2)
H15A0.77180.07510.03200.022*
C110.94887 (8)0.05417 (11)0.16864 (6)0.0146 (2)
C160.88343 (8)0.22754 (11)0.04984 (6)0.0148 (2)
C170.90831 (8)0.33498 (11)0.10124 (6)0.0168 (2)
H17A0.96820.39200.09050.020*
C100.99015 (8)0.19185 (11)0.27004 (6)0.0145 (2)
C180.84541 (8)0.35806 (11)0.16793 (6)0.0175 (2)
H18A0.86280.42910.20200.021*
C120.95244 (8)0.19665 (11)0.01989 (6)0.0151 (2)
C140.72719 (8)0.16701 (12)0.13212 (6)0.0188 (2)
H14A0.66620.11200.14270.023*
C90.85476 (8)0.25133 (11)0.18551 (6)0.0154 (2)
C21.13661 (8)0.12427 (11)0.36176 (6)0.0168 (2)
H2B1.19370.17800.38790.020*
H2C1.16760.07930.31760.020*
C131.05659 (10)0.27421 (13)0.03706 (7)0.0226 (2)
C31.02715 (9)0.34442 (12)0.38092 (6)0.0200 (2)
H3D1.01630.42410.34680.024*
H3E1.08960.36460.41460.024*
C60.69842 (9)0.30243 (12)0.09900 (6)0.0217 (2)
H6B0.73670.25110.06020.026*
H6C0.66920.38720.07540.026*
C70.75666 (9)0.47314 (12)0.20190 (7)0.0212 (2)
H7A0.77530.46150.25620.025*
H7B0.68040.49750.19700.025*
C40.92728 (10)0.32834 (14)0.42962 (7)0.0270 (3)
H4B0.91650.41300.45820.040*
H4C0.93800.25120.46460.040*
H4D0.86460.31070.39670.040*
C50.60582 (10)0.21306 (14)0.12663 (8)0.0320 (3)
H5B0.55770.19010.08390.048*
H5C0.56680.26420.16430.048*
H5D0.63440.12830.14920.048*
C80.82384 (11)0.59180 (13)0.16992 (8)0.0321 (3)
H8A0.80990.67670.19760.048*
H8B0.80450.60500.11650.048*
H8C0.89950.56870.17550.048*
C11.09742 (10)0.01179 (12)0.41592 (7)0.0244 (2)
H1A1.15710.04780.43140.037*
H1B1.04200.04330.39010.037*
H1C1.06840.05530.46050.037*
H13A1.0787 (13)0.3377 (19)0.0021 (10)0.043 (5)*
H13B1.0561 (14)0.325 (2)0.0845 (11)0.050 (5)*
H13C1.1172 (14)0.2076 (19)0.0445 (10)0.046 (5)*
H3A1.0310 (12)0.1104 (16)0.1438 (8)0.027 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N60.0158 (4)0.0174 (4)0.0152 (4)0.0012 (3)0.0017 (3)0.0008 (3)
O20.0243 (4)0.0356 (5)0.0240 (4)0.0003 (3)0.0093 (3)0.0004 (4)
O10.0308 (4)0.0284 (4)0.0169 (4)0.0089 (3)0.0008 (3)0.0064 (3)
N30.0177 (4)0.0185 (4)0.0148 (4)0.0038 (3)0.0056 (3)0.0029 (3)
N50.0152 (4)0.0170 (4)0.0157 (4)0.0002 (3)0.0001 (3)0.0017 (3)
N40.0152 (4)0.0170 (4)0.0135 (4)0.0000 (3)0.0011 (3)0.0009 (3)
N70.0160 (4)0.0182 (4)0.0143 (4)0.0002 (3)0.0022 (3)0.0035 (3)
N20.0176 (4)0.0173 (4)0.0132 (4)0.0008 (3)0.0031 (3)0.0010 (3)
C190.0178 (5)0.0198 (5)0.0125 (5)0.0063 (4)0.0017 (4)0.0007 (4)
N10.0208 (4)0.0233 (5)0.0156 (4)0.0085 (4)0.0025 (3)0.0010 (4)
N80.0173 (4)0.0187 (4)0.0196 (4)0.0037 (3)0.0027 (3)0.0018 (4)
C150.0192 (5)0.0177 (5)0.0171 (5)0.0014 (4)0.0011 (4)0.0035 (4)
C110.0145 (4)0.0161 (5)0.0133 (5)0.0014 (4)0.0004 (4)0.0002 (4)
C160.0161 (5)0.0149 (5)0.0132 (5)0.0017 (4)0.0000 (4)0.0010 (4)
C170.0166 (5)0.0161 (5)0.0179 (5)0.0003 (4)0.0008 (4)0.0003 (4)
C100.0131 (4)0.0173 (5)0.0132 (5)0.0028 (4)0.0017 (4)0.0003 (4)
C180.0199 (5)0.0166 (5)0.0162 (5)0.0033 (4)0.0024 (4)0.0037 (4)
C120.0164 (5)0.0154 (5)0.0134 (5)0.0000 (4)0.0007 (4)0.0009 (4)
C140.0173 (5)0.0198 (5)0.0190 (5)0.0008 (4)0.0025 (4)0.0005 (4)
C90.0141 (5)0.0170 (5)0.0150 (5)0.0009 (4)0.0016 (4)0.0013 (4)
C20.0148 (5)0.0203 (5)0.0150 (5)0.0008 (4)0.0027 (4)0.0009 (4)
C130.0232 (6)0.0256 (6)0.0185 (5)0.0084 (4)0.0052 (4)0.0043 (4)
C30.0209 (5)0.0204 (5)0.0184 (5)0.0010 (4)0.0028 (4)0.0064 (4)
C60.0205 (5)0.0249 (6)0.0192 (5)0.0062 (4)0.0054 (4)0.0004 (4)
C70.0197 (5)0.0202 (5)0.0237 (5)0.0062 (4)0.0011 (4)0.0026 (4)
C40.0279 (6)0.0320 (6)0.0213 (6)0.0027 (5)0.0039 (5)0.0068 (5)
C50.0251 (6)0.0302 (7)0.0398 (7)0.0021 (5)0.0131 (5)0.0053 (5)
C80.0366 (7)0.0212 (6)0.0388 (7)0.0008 (5)0.0071 (6)0.0016 (5)
C10.0276 (6)0.0234 (6)0.0223 (5)0.0002 (4)0.0028 (4)0.0026 (4)
Geometric parameters (Å, º) top
N6—C111.3294 (13)C12—C131.5023 (14)
N6—C91.3502 (14)C14—H14A0.9300
O2—N11.2354 (13)C2—C11.5182 (15)
O1—N11.2295 (13)C2—H2B0.9700
N3—N21.3562 (12)C2—H2C0.9700
N3—C111.3742 (14)C13—H13A0.958 (18)
N3—H3A0.868 (15)C13—H13B0.96 (2)
N5—C101.3466 (13)C13—H13C0.986 (18)
N5—C91.3470 (14)C3—C41.5285 (17)
N4—C111.3426 (13)C3—H3D0.9700
N4—C101.3490 (14)C3—H3E0.9700
N7—C101.3578 (13)C6—C51.5170 (18)
N7—C21.4632 (13)C6—H6B0.9700
N7—C31.4641 (13)C6—H6C0.9700
N2—C121.2902 (14)C7—C81.5195 (17)
C19—C181.3846 (15)C7—H7A0.9700
C19—C141.3876 (15)C7—H7B0.9700
C19—N11.4623 (13)C4—H4B0.9600
N8—C91.3549 (13)C4—H4C0.9600
N8—C71.4628 (14)C4—H4D0.9600
N8—C61.4639 (14)C5—H5B0.9600
C15—C141.3811 (15)C5—H5C0.9600
C15—C161.4072 (14)C5—H5D0.9600
C15—H15A0.9300C8—H8A0.9600
C16—C171.4011 (14)C8—H8B0.9600
C16—C121.4860 (14)C8—H8C0.9600
C17—C181.3897 (15)C1—H1A0.9600
C17—H17A0.9300C1—H1B0.9600
C18—H18A0.9300C1—H1C0.9600
C11—N6—C9112.92 (9)C1—C2—H2C108.9
N2—N3—C11120.30 (9)H2B—C2—H2C107.7
N2—N3—H3A123.2 (10)C12—C13—H13A115.6 (10)
C11—N3—H3A116.5 (10)C12—C13—H13B112.8 (11)
C10—N5—C9113.82 (9)H13A—C13—H13B108.0 (15)
C11—N4—C10112.86 (9)C12—C13—H13C110.4 (10)
C10—N7—C2120.71 (9)H13A—C13—H13C105.4 (14)
C10—N7—C3120.12 (9)H13B—C13—H13C103.7 (15)
C2—N7—C3119.08 (8)N7—C3—C4113.88 (9)
C12—N2—N3117.98 (9)N7—C3—H3D108.8
C18—C19—C14122.29 (9)C4—C3—H3D108.8
C18—C19—N1119.22 (10)N7—C3—H3E108.8
C14—C19—N1118.47 (10)C4—C3—H3E108.8
O1—N1—O2122.83 (9)H3D—C3—H3E107.7
O1—N1—C19118.75 (9)N8—C6—C5111.95 (10)
O2—N1—C19118.42 (9)N8—C6—H6B109.2
C9—N8—C7121.34 (9)C5—C6—H6B109.2
C9—N8—C6120.77 (9)N8—C6—H6C109.2
C7—N8—C6117.73 (9)C5—C6—H6C109.2
C14—C15—C16121.06 (10)H6B—C6—H6C107.9
C14—C15—H15A119.5N8—C7—C8111.88 (9)
C16—C15—H15A119.5N8—C7—H7A109.2
N6—C11—N4127.98 (10)C8—C7—H7A109.2
N6—C11—N3118.56 (9)N8—C7—H7B109.2
N4—C11—N3113.46 (9)C8—C7—H7B109.2
C17—C16—C15118.28 (9)H7A—C7—H7B107.9
C17—C16—C12122.27 (9)C3—C4—H4B109.5
C15—C16—C12119.44 (9)C3—C4—H4C109.5
C18—C17—C16121.36 (10)H4B—C4—H4C109.5
C18—C17—H17A119.3C3—C4—H4D109.5
C16—C17—H17A119.3H4B—C4—H4D109.5
N5—C10—N4126.06 (9)H4C—C4—H4D109.5
N5—C10—N7116.60 (9)C6—C5—H5B109.5
N4—C10—N7117.34 (9)C6—C5—H5C109.5
C19—C18—C17118.25 (10)H5B—C5—H5C109.5
C19—C18—H18A120.9C6—C5—H5D109.5
C17—C18—H18A120.9H5B—C5—H5D109.5
N2—C12—C16114.46 (9)H5C—C5—H5D109.5
N2—C12—C13123.85 (9)C7—C8—H8A109.5
C16—C12—C13121.66 (9)C7—C8—H8B109.5
C15—C14—C19118.74 (10)H8A—C8—H8B109.5
C15—C14—H14A120.6C7—C8—H8C109.5
C19—C14—H14A120.6H8A—C8—H8C109.5
N5—C9—N6126.22 (9)H8B—C8—H8C109.5
N5—C9—N8117.19 (9)C2—C1—H1A109.5
N6—C9—N8116.59 (9)C2—C1—H1B109.5
N7—C2—C1113.49 (9)H1A—C1—H1B109.5
N7—C2—H2B108.9C2—C1—H1C109.5
C1—C2—H2B108.9H1A—C1—H1C109.5
N7—C2—H2C108.9H1B—C1—H1C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.868 (15)2.491 (15)3.2751 (15)150.7 (13)
N3—H3A···O2i0.868 (15)2.474 (15)3.2486 (15)149.0 (13)
C2—H2C···N40.972.382.7252 (15)100
C7—H7A···N50.972.392.7322 (16)100
C15—H15A···N20.932.392.7128 (15)100
C1—H1A···Cg2ii0.962.913.7486 (16)147
C7—H7B···Cg1iii0.972.713.3835 (15)127
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x1/2, y3/2, z1/2; (iii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H28N8O2
Mr400.49
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.333 (3), 9.5286 (19), 17.407 (4)
β (°) 92.12 (3)
V3)2044.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.22 × 0.18 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19318, 4667, 4054
Rint0.018
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.104, 1.05
No. of reflections4667
No. of parameters278
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.24

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.868 (15)2.491 (15)3.2751 (15)150.7 (13)
N3—H3A···O2i0.868 (15)2.474 (15)3.2486 (15)149.0 (13)
C2—H2C···N40.97002.38002.7252 (15)100.00
C7—H7A···N50.97002.39002.7322 (16)100.00
C15—H15A···N20.93002.39002.7128 (15)100.00
C1—H1A···Cg2ii0.962.913.7486 (16)147
C7—H7B···Cg1iii0.972.713.3835 (15)127
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x1/2, y3/2, z1/2; (iii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Weifang University for support of this research (grant No. 2008Z14) and the Natural Science Foundation of Shandong Province (grant No. Y2008B29).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeschamps, P., Kulkarni, P. P. & Sarkar, B. (2003). Inorg. Chem. 42, 7366–7368.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJian, F.-F., Zhuang, R.-R., Wang, K.-F., Zhao, P.-S. & Xiao, H.-L. (2006). Acta Cryst. E62, o3198–o3199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRozwadowski, Z., Majewski, E., Dziembowska, T. & Hansen, P. E. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 2809–2817.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem. 25, 456–460.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds