metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[aqua­(1,10-phenanthro­line)zinc(II)]-μ-3,3′-(p-phenyl­ene)di­acrylato] hemihydrate]

aDepartment of Ophthalmology, Second Hospital of Jilin University, Changchun 130041, People's Republic of China, bDepartment of Vascular Surgery, China–Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China, cDepartment of Orthopaedics, China–Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China, and dTeaching Laboratory of Pathology, Norman Bethune College of Medicine, Jilin University, Changchun 130041, People's Republic of China
*Correspondence e-mail: li_yp2002@yahoo.com.cn

(Received 1 July 2009; accepted 2 July 2009; online 18 July 2009)

In the title compound, {[Zn(C12H8O4)(C12H8N2)(H2O)]·0.5H2O}n, each ZnII atom is six-coordinated by two N atoms from one 1,10-phenanthroline (phen), three carboxyl­ate O atoms from two different L ligands [H2L = 3,3′-(p-phenyl­ene)diacrylic acid] and one water mol­ecule in a distorted octa­hedral environment. The two L dianions are situated across inversion centres and bridge neighbouring ZnII centres, yielding a chain propagating parallel to [100]. O—H⋯O hydrogen bonds between the coordinated water molecule, the solvent water molecule (half-occupied) and the carboxylate O atoms further stabilize the structure.

Related literature

For general background and related structures see: Wang et al. (2008[Wang, X.-Y., Wang, J.-J. & Ng, S. W. (2008). Acta Cryst. C64, m401-m404.]). For related literature, see: Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C12H8O4)(C12H8N2)(H2O)]·0.5H2O

  • Mr = 488.78

  • Triclinic, [P \overline 1]

  • a = 8.959 (5) Å

  • b = 11.505 (5) Å

  • c = 11.691 (5) Å

  • α = 67.219 (5)°

  • β = 76.434 (5)°

  • γ = 89.555 (5)°

  • V = 1075.4 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 293 K

  • 0.30 × 0.22 × 0.19 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.701, Tmax = 0.792

  • 6674 measured reflections

  • 3887 independent reflections

  • 3193 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.101

  • S = 0.98

  • 3887 reflections

  • 312 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.90 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—HW12⋯O2i 0.85 (3) 1.87 (3) 2.687 (3) 158 (4)
O1W—HW11⋯O3i 0.86 (2) 1.88 (3) 2.685 (3) 155 (3)
O2W—HW21⋯O2 0.816 (10) 2.044 (14) 2.856 (5) 173 (5)
Symmetry code: (i) -x, -y, -z+2.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, chain structures have received much attention in coordination chemistry and medical chemistry (Batten & Robson, 1998). An appropriate bidentate organic acid bridge could be useful in the formation of chains in the presence of secondary ligands, such as 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen) (Wang et al., 2008). The N atoms from the secondary ligand may occupy two coordination positions of the metal ions. The rest of the coordination positions are available for other carboxylate ligands to allow the formation of a chain. In this regard, 3,3'-(p-phenylene)diacrylic acid (H2L) is a good ligand in coordination chemistry because of its strong coordination ability and versatile coordination modes, so much attention has been paid to it in recent decades. In the present study, we selected H2L as a linker and phen as a secondary chelating ligand, forming a unique zigzag chain coordination polymer [Zn(phen)(L)(H2O)].0.5H2O.

As shown in Fig. 1, each ZnII atom is six-coordinated by two N atoms from one phen, three carboxylate O atoms from two different L ligands, and one water molecule in a distorted octahedral sphere. The two L dianions are situated across inversion centres. The bpea dianions bridge two neighboring ZnII centres to form a one-dimensional chain (Fig. 2). The O—H···Ocarboxylate H-bonding interactions further stabilize the structure of the title compound (Table 1).

Related literature top

For general background and related structures see: Wang et al. (2008). For related literature, see: Batten & Robson (1998).

Experimental top

A mixture of 3,3'-(p-phenylene)diacrylic acid (0.5 mmol), 1,10-phenanthroline (0.5 mmol), NaOH (1 mmol) and ZnCl2.2H2O (0.5 mmol) was suspended in deionized water (12 ml) and sealed in a 20 ml Teflon-lined autoclave. After heating at 438 K for one week, the autoclave was cooled slowly to room temperature. Crystals were collected, washed with deionized water and dried.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93Å) and refined as riding, with Uiso(H) = 1.2Ueq(carrier). The water H atoms were located in a difference Fourier map and were refined with distance restraints of O—H = 0.85Å and H···H = 1.35Å. The displacement parameters of the H atoms attached to atom O2W were tied to those of the parent atom by a factor of 1.5, while those on O1W were refined freely.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit in the polymeric structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 20% probability level [symmetry operations: (i) 1-x, -y, 3-z; (ii) -x-1, 1-y, 2-z].
[Figure 2] Fig. 2. View of the one-dimensional chain of the title compound.
catena-Poly[[[aqua(1,10-phenanthroline)zinc(II)]-µ-3,3'-(p- phenylene)diacrylato] hemihydrate] top
Crystal data top
[Zn(C12H8O4)(C12H8N2)(H2O)]·0.5H2OZ = 2
Mr = 488.78F(000) = 502
Triclinic, P1Dx = 1.509 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.959 (5) ÅCell parameters from 3887 reflections
b = 11.505 (5) Åθ = 3.0–25.4°
c = 11.691 (5) ŵ = 1.18 mm1
α = 67.219 (5)°T = 293 K
β = 76.434 (5)°Block, colourless
γ = 89.555 (5)°0.30 × 0.22 × 0.19 mm
V = 1075.4 (9) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
3887 independent reflections
Radiation source: fine-focus sealed tube3193 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 25.4°, θmin = 4.2°
Absorption correction: multi-scan
(SADABS; Sheldrick 1996)
h = 109
Tmin = 0.701, Tmax = 0.792k = 1113
6674 measured reflectionsl = 1214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0712P)2]
where P = (Fo2 + 2Fc2)/3
3887 reflections(Δ/σ)max < 0.001
312 parametersΔρmax = 0.90 e Å3
6 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Zn(C12H8O4)(C12H8N2)(H2O)]·0.5H2Oγ = 89.555 (5)°
Mr = 488.78V = 1075.4 (9) Å3
Triclinic, P1Z = 2
a = 8.959 (5) ÅMo Kα radiation
b = 11.505 (5) ŵ = 1.18 mm1
c = 11.691 (5) ÅT = 293 K
α = 67.219 (5)°0.30 × 0.22 × 0.19 mm
β = 76.434 (5)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
3887 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick 1996)
3193 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 0.792Rint = 0.019
6674 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0366 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.90 e Å3
3887 reflectionsΔρmin = 0.24 e Å3
312 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.22324 (4)0.16358 (3)0.84090 (3)0.02776 (13)
O1W0.1608 (2)0.02160 (18)0.87917 (19)0.0326 (4)
O20.1060 (3)0.0767 (2)1.1643 (2)0.0512 (6)
O30.0271 (2)0.20043 (17)0.88909 (18)0.0391 (5)
O40.1579 (2)0.3439 (2)0.8484 (2)0.0469 (5)
O10.3082 (3)0.1033 (2)0.99979 (18)0.0429 (5)
N20.1984 (3)0.2138 (2)0.6449 (2)0.0311 (5)
N10.4515 (3)0.2360 (2)0.7226 (2)0.0310 (5)
C240.0755 (4)0.1957 (3)0.6072 (3)0.0397 (7)
H240.01320.15190.66940.048*
C40.4100 (3)0.0176 (2)1.4115 (3)0.0312 (6)
C120.4743 (3)0.6175 (2)0.9997 (3)0.0302 (6)
H120.45650.69760.99860.036*
C180.3274 (3)0.2775 (2)0.5531 (2)0.0293 (6)
C160.5967 (4)0.3587 (3)0.5039 (3)0.0398 (7)
C210.3323 (4)0.3264 (3)0.4225 (3)0.0385 (7)
C100.3744 (3)0.4296 (2)0.9805 (2)0.0262 (6)
C140.7138 (4)0.3119 (3)0.6779 (4)0.0529 (9)
H140.79880.31710.70920.064*
C30.3115 (4)0.0349 (3)1.3225 (3)0.0338 (6)
H30.20580.02761.35750.041*
C20.3556 (4)0.0593 (3)1.1999 (3)0.0350 (7)
H20.46040.06381.16290.042*
C90.2477 (3)0.3549 (2)0.9552 (3)0.0298 (6)
H90.27530.27060.97360.036*
C50.5685 (4)0.0473 (3)1.3708 (3)0.0398 (7)
H50.61610.07931.28350.048*
C60.6565 (4)0.0305 (3)1.4563 (3)0.0387 (7)
H60.76240.05151.42590.046*
C110.3509 (3)0.5488 (2)0.9820 (2)0.0303 (6)
H110.25170.58180.97090.036*
C170.4611 (3)0.2916 (2)0.5953 (2)0.0297 (6)
C150.7236 (4)0.3696 (3)0.5503 (4)0.0506 (9)
H150.81450.41610.49410.061*
C80.0978 (3)0.3927 (3)0.9090 (3)0.0333 (6)
H80.06410.47480.89390.040*
C220.2003 (4)0.3045 (3)0.3869 (3)0.0466 (8)
H220.19960.33450.30090.056*
C230.0726 (4)0.2386 (3)0.4800 (3)0.0467 (8)
H230.01600.22270.45780.056*
C10.2466 (4)0.0804 (2)1.1161 (3)0.0345 (7)
C70.0161 (3)0.3079 (3)0.8811 (3)0.0335 (6)
C190.5968 (4)0.4111 (3)0.3712 (3)0.0491 (9)
H190.68510.45790.31070.059*
C200.4736 (4)0.3944 (3)0.3323 (3)0.0499 (9)
H200.47880.42730.24500.060*
C130.5761 (4)0.2450 (3)0.7616 (3)0.0412 (7)
H130.57170.20520.84860.049*
O2W0.0410 (4)0.2769 (3)1.2193 (3)0.0270 (8)0.50
HW220.121 (4)0.275 (5)1.198 (6)0.040*0.50
HW210.008 (5)0.223 (4)1.202 (6)0.040*0.50
HW120.073 (4)0.019 (4)0.863 (4)0.090 (16)*
HW110.144 (4)0.074 (3)0.958 (2)0.057 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0284 (2)0.03257 (19)0.02057 (18)0.00310 (12)0.00688 (12)0.00830 (13)
O1W0.0300 (12)0.0337 (10)0.0290 (11)0.0016 (8)0.0075 (9)0.0067 (9)
O20.0353 (13)0.0729 (15)0.0441 (13)0.0072 (11)0.0161 (10)0.0180 (11)
O30.0455 (13)0.0329 (11)0.0309 (10)0.0078 (9)0.0001 (9)0.0098 (8)
O40.0272 (12)0.0614 (13)0.0518 (13)0.0078 (10)0.0054 (10)0.0248 (11)
O10.0513 (14)0.0539 (12)0.0247 (10)0.0023 (10)0.0200 (9)0.0108 (9)
N20.0305 (13)0.0360 (12)0.0228 (11)0.0001 (10)0.0064 (9)0.0075 (10)
N10.0310 (13)0.0360 (12)0.0299 (12)0.0063 (10)0.0095 (10)0.0163 (10)
C240.0337 (17)0.0485 (17)0.0344 (16)0.0003 (13)0.0104 (13)0.0127 (14)
C40.0380 (16)0.0340 (14)0.0255 (14)0.0037 (12)0.0135 (12)0.0127 (11)
C120.0329 (15)0.0255 (13)0.0314 (14)0.0005 (11)0.0048 (12)0.0121 (11)
C180.0350 (16)0.0266 (13)0.0222 (13)0.0042 (11)0.0046 (11)0.0068 (11)
C160.0352 (17)0.0350 (15)0.0423 (17)0.0020 (13)0.0037 (13)0.0156 (13)
C210.0473 (19)0.0384 (15)0.0242 (14)0.0083 (13)0.0073 (13)0.0076 (12)
C100.0280 (14)0.0278 (13)0.0205 (12)0.0010 (11)0.0044 (11)0.0080 (10)
C140.0295 (17)0.077 (2)0.068 (2)0.0018 (16)0.0132 (16)0.044 (2)
C30.0356 (16)0.0383 (15)0.0292 (15)0.0011 (12)0.0137 (12)0.0120 (12)
C20.0378 (17)0.0386 (15)0.0290 (15)0.0000 (13)0.0164 (13)0.0093 (12)
C90.0318 (15)0.0277 (13)0.0287 (14)0.0045 (11)0.0086 (12)0.0091 (11)
C50.0402 (18)0.0584 (18)0.0192 (13)0.0004 (14)0.0079 (12)0.0131 (13)
C60.0285 (15)0.0572 (18)0.0306 (15)0.0006 (13)0.0088 (12)0.0168 (14)
C110.0246 (14)0.0360 (14)0.0287 (14)0.0022 (11)0.0028 (11)0.0133 (12)
C170.0324 (15)0.0270 (13)0.0272 (14)0.0011 (11)0.0030 (12)0.0105 (11)
C150.0322 (18)0.0564 (19)0.061 (2)0.0060 (15)0.0019 (15)0.0283 (17)
C80.0313 (16)0.0324 (14)0.0348 (15)0.0032 (12)0.0077 (12)0.0121 (12)
C220.057 (2)0.0567 (19)0.0252 (15)0.0122 (16)0.0152 (15)0.0119 (14)
C230.046 (2)0.065 (2)0.0369 (17)0.0091 (16)0.0225 (15)0.0210 (15)
C10.0420 (19)0.0300 (14)0.0300 (15)0.0061 (12)0.0169 (13)0.0056 (12)
C70.0347 (17)0.0369 (16)0.0229 (14)0.0073 (12)0.0059 (12)0.0065 (12)
C190.044 (2)0.0462 (18)0.0369 (17)0.0047 (15)0.0089 (15)0.0064 (14)
C200.059 (2)0.0505 (18)0.0210 (14)0.0018 (16)0.0035 (15)0.0014 (13)
C130.0371 (17)0.0548 (18)0.0437 (17)0.0104 (14)0.0172 (14)0.0282 (15)
O2W0.029 (2)0.0325 (19)0.0288 (19)0.0005 (15)0.0180 (16)0.0163 (16)
Geometric parameters (Å, º) top
Zn1—O12.041 (2)C21—C201.442 (5)
Zn1—O1W2.053 (2)C10—C111.396 (4)
Zn1—N12.144 (3)C10—C12ii1.397 (4)
Zn1—O42.180 (2)C10—C91.462 (4)
Zn1—N22.202 (2)C14—C151.359 (5)
Zn1—O32.260 (2)C14—C131.392 (5)
Zn1—C72.563 (3)C14—H140.9300
O1W—HW120.85 (3)C3—C21.309 (4)
O1W—HW110.86 (2)C3—H30.9300
O2—C11.246 (4)C2—C11.494 (4)
O3—C71.260 (4)C2—H20.9300
O4—C71.261 (4)C9—C81.331 (4)
O1—C11.263 (4)C9—H90.9300
N2—C241.324 (4)C5—C61.369 (4)
N2—C181.360 (4)C5—H50.9300
N1—C131.320 (4)C6—C4i1.401 (4)
N1—C171.355 (4)C6—H60.9300
C24—C231.380 (4)C11—H110.9300
C24—H240.9300C15—H150.9300
C4—C51.388 (4)C8—C71.475 (4)
C4—C6i1.401 (4)C8—H80.9300
C4—C31.472 (4)C22—C231.363 (5)
C12—C111.378 (4)C22—H220.9300
C12—C10ii1.397 (4)C23—H230.9300
C12—H120.9300C19—C201.329 (5)
C18—C211.398 (4)C19—H190.9300
C18—C171.431 (4)C20—H200.9300
C16—C151.395 (5)C13—H130.9300
C16—C171.407 (4)O2W—HW220.815 (10)
C16—C191.431 (5)O2W—HW210.816 (10)
C21—C221.396 (5)
O1—Zn1—O1W89.22 (9)C15—C14—H14120.1
O1—Zn1—N189.76 (9)C13—C14—H14120.1
O1W—Zn1—N1115.47 (8)C2—C3—C4127.5 (3)
O1—Zn1—O496.13 (9)C2—C3—H3116.2
O1W—Zn1—O4149.07 (9)C4—C3—H3116.2
N1—Zn1—O495.05 (8)C3—C2—C1123.6 (3)
O1—Zn1—N2162.97 (9)C3—C2—H2118.2
O1W—Zn1—N288.25 (8)C1—C2—H2118.2
N1—Zn1—N276.20 (9)C8—C9—C10128.0 (3)
O4—Zn1—N294.67 (9)C8—C9—H9116.0
O1—Zn1—O3111.13 (9)C10—C9—H9116.0
O1W—Zn1—O390.77 (8)C6—C5—C4121.4 (3)
N1—Zn1—O3147.13 (8)C6—C5—H5119.3
O4—Zn1—O358.87 (8)C4—C5—H5119.3
N2—Zn1—O385.75 (8)C5—C6—C4i121.3 (3)
O1—Zn1—C7104.70 (9)C5—C6—H6119.3
O1W—Zn1—C7119.90 (9)C4i—C6—H6119.3
N1—Zn1—C7122.57 (9)C12—C11—C10120.2 (3)
O4—Zn1—C729.45 (9)C12—C11—H11119.9
N2—Zn1—C791.12 (9)C10—C11—H11119.9
O3—Zn1—C729.44 (8)N1—C17—C16123.0 (3)
Zn1—O1W—HW12104 (3)N1—C17—C18117.7 (2)
Zn1—O1W—HW11116 (2)C16—C17—C18119.2 (3)
HW12—O1W—HW11104 (3)C14—C15—C16119.7 (3)
C7—O3—Zn188.74 (18)C14—C15—H15120.1
C7—O4—Zn192.34 (18)C16—C15—H15120.1
C1—O1—Zn1132.4 (2)C9—C8—C7121.7 (3)
C24—N2—C18117.9 (2)C9—C8—H8119.1
C24—N2—Zn1128.96 (19)C7—C8—H8119.1
C18—N2—Zn1113.08 (18)C23—C22—C21119.1 (3)
C13—N1—C17118.0 (3)C23—C22—H22120.4
C13—N1—Zn1126.8 (2)C21—C22—H22120.4
C17—N1—Zn1114.67 (18)C22—C23—C24119.6 (3)
N2—C24—C23123.2 (3)C22—C23—H23120.2
N2—C24—H24118.4C24—C23—H23120.2
C23—C24—H24118.4O2—C1—O1125.7 (3)
C5—C4—C6i117.2 (3)O2—C1—C2118.7 (3)
C5—C4—C3123.0 (3)O1—C1—C2115.5 (3)
C6i—C4—C3119.8 (3)O3—C7—O4120.0 (3)
C11—C12—C10ii121.8 (2)O3—C7—C8120.6 (3)
C11—C12—H12119.1O4—C7—C8119.4 (3)
C10ii—C12—H12119.1O3—C7—Zn161.82 (15)
N2—C18—C21122.3 (3)O4—C7—Zn158.21 (16)
N2—C18—C17117.1 (2)C8—C7—Zn1176.5 (2)
C21—C18—C17120.6 (3)C20—C19—C16121.5 (3)
C15—C16—C17116.9 (3)C20—C19—H19119.2
C15—C16—C19124.2 (3)C16—C19—H19119.2
C17—C16—C19118.9 (3)C19—C20—C21121.4 (3)
C22—C21—C18117.9 (3)C19—C20—H20119.3
C22—C21—C20123.8 (3)C21—C20—H20119.3
C18—C21—C20118.3 (3)N1—C13—C14122.6 (3)
C11—C10—C12ii118.0 (2)N1—C13—H13118.7
C11—C10—C9122.8 (2)C14—C13—H13118.7
C12ii—C10—C9119.1 (2)HW22—O2W—HW21105.6 (18)
C15—C14—C13119.8 (3)
Symmetry codes: (i) x+1, y, z+3; (ii) x1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—HW12···O2iii0.85 (3)1.87 (3)2.687 (3)158 (4)
O1W—HW11···O3iii0.86 (2)1.88 (3)2.685 (3)155 (3)
O2W—HW21···O20.82 (1)2.04 (1)2.856 (5)173 (5)
Symmetry code: (iii) x, y, z+2.

Experimental details

Crystal data
Chemical formula[Zn(C12H8O4)(C12H8N2)(H2O)]·0.5H2O
Mr488.78
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.959 (5), 11.505 (5), 11.691 (5)
α, β, γ (°)67.219 (5), 76.434 (5), 89.555 (5)
V3)1075.4 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.30 × 0.22 × 0.19
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick 1996)
Tmin, Tmax0.701, 0.792
No. of measured, independent and
observed [I > 2σ(I)] reflections
6674, 3887, 3193
Rint0.019
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.101, 0.98
No. of reflections3887
No. of parameters312
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.90, 0.24

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—HW12···O2i0.85 (3)1.87 (3)2.687 (3)158 (4)
O1W—HW11···O3i0.86 (2)1.88 (3)2.685 (3)155 (3)
O2W—HW21···O20.816 (10)2.044 (14)2.856 (5)173 (5)
Symmetry code: (i) x, y, z+2.
 

Acknowledgements

The authors thank the China–Japan Union Hospital of Jilin University for generously supporting this study.

References

First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-Y., Wang, J.-J. & Ng, S. W. (2008). Acta Cryst. C64, m401–m404.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds