organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 5-cyano-4-[2-(2,4-di­chloro­phen­­oxy)acetamido]-1-phenyl-1H-pyrrole-3-carboxyl­ate

aInstitute of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, People's Republic of China, bSchool of Basic Medical Science, Yunyang Medical College and Yunyang Medical College Library, Shiyan 442000, People's Republic of China, cDepartment of Pharmacy, Affiliated Renmin Hospital, Yunyang Medical College, Shiyan 442000, People's Republic of China, and dKey Laboratory of Pesticides & Chemical Biology, Ministry of Education, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: jxu6686@yahoo.com.cn

(Received 9 July 2009; accepted 15 July 2009; online 22 July 2009)

In the title compound, C22H17Cl2N3O4, the pyrrole ring and the 2,4-dichloro­phenyl group form a dihedral angle of 8.14 (13)°; the phenyl ring is twisted with respect to the pyrrole ring, forming a dihedral angle of 60.77 (14)°. The C=O bond length is 1.213 (3) Å, indicating that the mol­ecule is in the keto form, associated with a –CONH– group, and the amide group adopts the usual trans conformation. The mol­ecule is stabilized by an intra­molecular N—H⋯O hydrogen-bonding inter­action. In the crystal, the stacked mol­ecules exhibit inter­molecular C—H⋯O and C—H⋯N hydrogen-bonding inter­actions.

Related literature

For the preparation and biological activity of acid amides, see: Xue et al. (2007[Xue, S., Yan, L. & Fang, H. (2007). J. Shanghai Normal Univ. 36, 79-82.]); Li et al. (1995[Li, L. & Xu, S. (1995). Acta Pharm. Sin. 30, 556-560.]). For related structures, see: He et al. (2007a[He, P., Peng, X.-M. & Li, G.-H. (2007a). Acta Cryst. E63, o4884.],b[He, P., Zheng, A., Cai, C.-Q. & Fang, C.-L. (2007b). Acta Cryst. E63, o3185.]).

[Scheme 1]

Experimental

Crystal data
  • C22H17Cl2N3O4

  • Mr = 458.29

  • Monoclinic, C 2/c

  • a = 32.8846 (18) Å

  • b = 7.6224 (4) Å

  • c = 17.2834 (9) Å

  • γ = 89.773 (1)°

  • V = 4332.2 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 298 K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART 4K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.968, Tmax = 0.968

  • 16521 measured reflections

  • 4279 independent reflections

  • 3034 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.154

  • S = 0.99

  • 4279 reflections

  • 285 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3 0.82 (2) 2.15 (3) 2.813 (3) 137 (2)
C7—H7A⋯O2i 0.97 2.57 3.341 (3) 137
C3—H3⋯N3i 0.93 2.61 3.312 (3) 133
Symmetry code: (i) [-x+2, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The chemical and pharmacological properties of acid amides have been investigated extensively, owing to their potentially beneficial chemical and biological activties (Xue et al., 2007 and Li et al., 1995). As part of our studies on the synthesis and characterization of related compounds (He et al., 2007a,b), we report here the synthesis and crystal structure of ethyl 4-(2-(2,4-dichlorophenoxy)acetamido)-5-cyano-1-phenyl-1H-pyrrole- 3-carboxylate, (I).

Within the molecule of (I), the bond lengths and angles present no unusual features. The pyrrole ring and the 2,4-dichlorophenyl group form a dihedral angle of 8.14 (13)°, the C17—C22 phenyl ring is twisted with respect to pyrrole ring, with a dihedral angle of 60.77 (14)°. The C=O bond length is 1.213 (3) Å, indicating that the molecule is in the keto form (Fig. 1), associated with –CONH– moiety, and the amide group adopts the usual trans conformation. The crystal structure is stabilized by intramolecular N—H···O hydrogen bonds interactions. In additional, the stacked molecules exhibit intermolecular C—H···O and C—H···N hydrogen bonds interactions (Fig 2. Table 1).

Related literature top

For the preparation and biological activity of acid amides, see: Xue et al. (2007); Li et al. (1995). For related structures, see: He et al. (2007a,b).

Experimental top

To a solution of the ethyl 4-amino-5-cyano-1-phenyl-1H-pyrrole-3-carboxylate (3 mmol) in dry dichloromethane (15 ml) was added 2-(2,4-dichlorophenoxy)acetyl chloride at 273–278 K. After stirring the reaction mixture for 4 h from 273–278 K to room temperature. The solution was concentrated under reduced pressure and the residue was recrystallized from ethanol to give the title compound in a yield of 45%. Crystals suitable for single-crystal X-ray diffraction were obtained by recrystallization from a mixed solvent of ethanol and dichloromethane (1:3 v/v) at room temperature.

Refinement top

The carbon-bound hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å, Uiso=1.2Ueq (C) for Csp2, C—H = 0.97 Å, Uiso = 1.2Ueq (C) for CH2 and C—H = 0.96 Å, Uiso = 1.5Ueq (C) for CH3. The H atom of the NH group was found from a difference Fourier map and refined with a fixed Uiso of 0.05.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I) showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. Intramolecular hydrogen bonds are drawn as a dashed line.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing hydrogen bonds stacking interactions.
Ethyl 5-cyano-4-[2-(2,4-dichlorophenoxy)acetamido]-1-phenyl-1H-pyrrole- 3-carboxylate top
Crystal data top
C22H17Cl2N3O4F(000) = 1888
Mr = 458.29Dx = 1.401 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4400 reflections
a = 32.8846 (18) Åθ = 2.5–26.3°
b = 7.6224 (4) ŵ = 0.33 mm1
c = 17.2834 (9) ÅT = 298 K
β = 90°Block, yellow
V = 4332.2 (4) Å30.10 × 0.10 × 0.10 mm
Z = 8
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
4279 independent reflections
Radiation source: fine-focus sealed tube3034 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
ϕ and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 4039
Tmin = 0.968, Tmax = 0.968k = 99
16521 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.055P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
4279 reflectionsΔρmax = 0.32 e Å3
285 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0042 (4)
Crystal data top
C22H17Cl2N3O4V = 4332.2 (4) Å3
Mr = 458.29Z = 8
Monoclinic, C2/cMo Kα radiation
a = 32.8846 (18) ŵ = 0.33 mm1
b = 7.6224 (4) ÅT = 298 K
c = 17.2834 (9) Å0.10 × 0.10 × 0.10 mm
β = 90°
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
4279 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3034 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.968Rint = 0.081
16521 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.32 e Å3
4279 reflectionsΔρmin = 0.31 e Å3
285 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.06329 (6)0.1879 (3)0.05715 (13)0.0426 (6)
C21.09068 (7)0.1312 (3)0.11185 (14)0.0466 (6)
H21.08130.08010.15730.056*
C31.13204 (7)0.1495 (3)0.09995 (14)0.0472 (6)
H31.15050.11070.13690.057*
C41.14550 (7)0.2257 (3)0.03284 (15)0.0463 (6)
C51.11863 (7)0.2840 (3)0.02255 (14)0.0470 (6)
H51.12820.33510.06790.056*
C61.07783 (7)0.2659 (3)0.01021 (14)0.0469 (6)
C71.00695 (6)0.1112 (4)0.13490 (13)0.0558 (7)
H7A1.01840.17920.17700.067*
H7B1.01470.01030.14200.067*
C80.96114 (7)0.1270 (4)0.13558 (14)0.0511 (7)
C90.90125 (6)0.1809 (3)0.05703 (13)0.0368 (5)
C100.88509 (6)0.2629 (3)0.00962 (13)0.0399 (6)
C110.84392 (7)0.2760 (3)0.00079 (14)0.0440 (6)
H110.82590.32660.03400.053*
C120.86902 (6)0.1425 (3)0.10524 (12)0.0387 (5)
C130.86531 (6)0.0454 (3)0.17456 (14)0.0446 (6)
C140.90849 (7)0.3115 (3)0.07786 (13)0.0431 (6)
C150.90645 (8)0.4263 (4)0.20453 (14)0.0589 (7)
H15A0.91890.32260.22670.071*
H15B0.92770.51150.19430.071*
C160.87619 (9)0.5007 (4)0.25914 (15)0.0693 (8)
H16A0.85680.41190.27290.104*
H16B0.88980.54120.30480.104*
H16C0.86240.59700.23500.104*
C170.79429 (7)0.2161 (4)0.10469 (13)0.0448 (6)
C180.77391 (8)0.0684 (4)0.12715 (16)0.0647 (8)
H180.78520.04190.11930.078*
C190.73596 (8)0.0858 (5)0.16203 (18)0.0770 (10)
H190.72170.01330.17750.092*
C200.71982 (8)0.2485 (5)0.17348 (18)0.0729 (10)
H200.69450.25960.19680.088*
C210.74032 (9)0.3942 (5)0.15128 (18)0.0774 (10)
H210.72910.50450.15960.093*
C220.77795 (8)0.3792 (4)0.11624 (16)0.0650 (8)
H220.79200.47890.10070.078*
Cl11.197500 (19)0.25261 (10)0.01853 (5)0.0708 (3)
Cl21.04355 (2)0.33930 (11)0.07912 (4)0.0718 (3)
N10.94269 (5)0.1515 (3)0.06772 (11)0.0413 (5)
H10.9550 (7)0.163 (3)0.0265 (14)0.050*
N20.83373 (5)0.2042 (3)0.06907 (11)0.0428 (5)
N30.85896 (7)0.0374 (3)0.22814 (13)0.0672 (7)
O11.02216 (4)0.1736 (3)0.06353 (9)0.0548 (5)
O20.94335 (5)0.1152 (3)0.19676 (10)0.0876 (8)
O30.94465 (5)0.2865 (3)0.08352 (10)0.0602 (5)
O40.88571 (5)0.3817 (2)0.13360 (9)0.0512 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0333 (11)0.0469 (14)0.0477 (14)0.0048 (11)0.0088 (9)0.0098 (11)
C20.0392 (12)0.0525 (16)0.0481 (14)0.0005 (11)0.0085 (10)0.0034 (11)
C30.0365 (12)0.0482 (15)0.0568 (15)0.0009 (11)0.0050 (10)0.0051 (12)
C40.0351 (12)0.0420 (15)0.0619 (17)0.0056 (10)0.0123 (11)0.0102 (12)
C50.0456 (14)0.0446 (15)0.0509 (15)0.0098 (12)0.0122 (11)0.0045 (12)
C60.0453 (13)0.0466 (15)0.0488 (15)0.0050 (11)0.0058 (11)0.0047 (11)
C70.0332 (12)0.088 (2)0.0467 (15)0.0018 (13)0.0080 (10)0.0048 (14)
C80.0367 (12)0.0704 (19)0.0462 (15)0.0007 (12)0.0077 (10)0.0003 (13)
C90.0346 (11)0.0349 (12)0.0408 (13)0.0005 (9)0.0069 (9)0.0042 (10)
C100.0379 (12)0.0401 (14)0.0417 (13)0.0004 (10)0.0061 (9)0.0062 (10)
C110.0402 (12)0.0495 (15)0.0422 (14)0.0065 (11)0.0030 (10)0.0003 (11)
C120.0335 (11)0.0396 (14)0.0429 (13)0.0006 (10)0.0037 (9)0.0053 (10)
C130.0387 (12)0.0448 (15)0.0503 (15)0.0017 (11)0.0095 (10)0.0015 (12)
C140.0451 (13)0.0406 (14)0.0438 (14)0.0024 (11)0.0071 (10)0.0033 (11)
C150.0665 (16)0.0642 (19)0.0462 (15)0.0044 (14)0.0142 (12)0.0064 (13)
C160.095 (2)0.0593 (19)0.0532 (17)0.0005 (16)0.0097 (15)0.0086 (14)
C170.0321 (11)0.0607 (17)0.0417 (14)0.0026 (11)0.0075 (9)0.0056 (12)
C180.0486 (15)0.062 (2)0.083 (2)0.0056 (14)0.0190 (13)0.0104 (16)
C190.0512 (16)0.090 (3)0.089 (2)0.0172 (17)0.0248 (15)0.0068 (19)
C200.0404 (15)0.113 (3)0.065 (2)0.0102 (17)0.0119 (13)0.0050 (18)
C210.0597 (18)0.076 (2)0.097 (2)0.0263 (17)0.0216 (16)0.0000 (19)
C220.0525 (15)0.062 (2)0.081 (2)0.0180 (14)0.0167 (14)0.0102 (15)
Cl10.0377 (4)0.0833 (7)0.0914 (6)0.0088 (3)0.0170 (3)0.0030 (4)
Cl20.0563 (4)0.0931 (7)0.0661 (5)0.0070 (4)0.0030 (3)0.0237 (4)
N10.0296 (9)0.0548 (13)0.0395 (11)0.0012 (9)0.0095 (8)0.0021 (9)
N20.0327 (10)0.0500 (12)0.0457 (12)0.0018 (9)0.0088 (8)0.0022 (9)
N30.0656 (14)0.0708 (17)0.0651 (15)0.0111 (13)0.0067 (11)0.0144 (14)
O10.0330 (8)0.0832 (14)0.0482 (10)0.0031 (8)0.0087 (7)0.0094 (9)
O20.0396 (10)0.177 (3)0.0465 (11)0.0017 (12)0.0101 (8)0.0107 (13)
O30.0381 (9)0.0839 (15)0.0584 (12)0.0009 (9)0.0113 (8)0.0078 (10)
O40.0494 (9)0.0605 (12)0.0436 (9)0.0053 (8)0.0091 (7)0.0083 (8)
Geometric parameters (Å, º) top
C1—O11.363 (2)C12—N21.401 (3)
C1—C21.377 (3)C12—C131.415 (3)
C1—C61.393 (3)C13—N31.141 (3)
C2—C31.384 (3)C14—O31.210 (3)
C2—H20.9300C14—O41.334 (3)
C3—C41.372 (3)C15—O41.445 (3)
C3—H30.9300C15—C161.486 (4)
C4—C51.378 (4)C15—H15A0.9700
C4—Cl11.742 (2)C15—H15B0.9700
C5—C61.367 (3)C16—H16A0.9600
C5—H50.9300C16—H16B0.9600
C6—Cl21.734 (3)C16—H16C0.9600
C7—O11.415 (2)C17—C181.368 (4)
C7—C81.513 (3)C17—C221.370 (3)
C7—H7A0.9700C17—N21.440 (3)
C7—H7B0.9700C18—C191.394 (3)
C8—O21.213 (3)C18—H180.9300
C8—N11.335 (3)C19—C201.365 (4)
C9—C121.381 (3)C19—H190.9300
C9—N11.395 (3)C20—C211.356 (4)
C9—C101.416 (3)C20—H200.9300
C10—C111.371 (3)C21—C221.384 (3)
C10—C141.458 (3)C21—H210.9300
C11—N21.345 (3)C22—H220.9300
C11—H110.9300N1—H10.82 (2)
O1—C1—C2124.7 (2)O3—C14—C10123.1 (2)
O1—C1—C6116.3 (2)O4—C14—C10112.99 (19)
C2—C1—C6119.0 (2)O4—C15—C16108.3 (2)
C1—C2—C3120.7 (2)O4—C15—H15A110.0
C1—C2—H2119.7C16—C15—H15A110.0
C3—C2—H2119.7O4—C15—H15B110.0
C4—C3—C2119.1 (2)C16—C15—H15B110.0
C4—C3—H3120.5H15A—C15—H15B108.4
C2—C3—H3120.5C15—C16—H16A109.5
C3—C4—C5121.2 (2)C15—C16—H16B109.5
C3—C4—Cl1119.2 (2)H16A—C16—H16B109.5
C5—C4—Cl1119.60 (19)C15—C16—H16C109.5
C6—C5—C4119.3 (2)H16A—C16—H16C109.5
C6—C5—H5120.3H16B—C16—H16C109.5
C4—C5—H5120.3C18—C17—C22120.9 (2)
C5—C6—C1120.7 (2)C18—C17—N2120.8 (2)
C5—C6—Cl2119.96 (19)C22—C17—N2118.3 (2)
C1—C6—Cl2119.30 (18)C17—C18—C19118.9 (3)
O1—C7—C8109.44 (19)C17—C18—H18120.5
O1—C7—H7A109.8C19—C18—H18120.5
C8—C7—H7A109.8C20—C19—C18119.9 (3)
O1—C7—H7B109.8C20—C19—H19120.0
C8—C7—H7B109.8C18—C19—H19120.0
H7A—C7—H7B108.2C21—C20—C19120.7 (3)
O2—C8—N1123.9 (2)C21—C20—H20119.6
O2—C8—C7118.8 (2)C19—C20—H20119.6
N1—C8—C7117.25 (19)C20—C21—C22120.1 (3)
C12—C9—N1129.6 (2)C20—C21—H21119.9
C12—C9—C10107.26 (19)C22—C21—H21119.9
N1—C9—C10123.14 (18)C17—C22—C21119.4 (3)
C11—C10—C9107.27 (19)C17—C22—H22120.3
C11—C10—C14127.6 (2)C21—C22—H22120.3
C9—C10—C14124.99 (19)C8—N1—C9125.75 (19)
N2—C11—C10109.4 (2)C8—N1—H1123.4 (17)
N2—C11—H11125.3C9—N1—H1110.5 (18)
C10—C11—H11125.3C11—N2—C12108.81 (17)
C9—C12—N2107.22 (19)C11—N2—C17125.1 (2)
C9—C12—C13133.6 (2)C12—N2—C17125.30 (19)
N2—C12—C13118.87 (18)C1—O1—C7116.70 (18)
N3—C13—C12173.9 (2)C14—O4—C15116.29 (18)
O3—C14—O4123.9 (2)
O1—C1—C2—C3179.2 (2)C22—C17—C18—C190.2 (4)
C6—C1—C2—C30.7 (4)N2—C17—C18—C19179.4 (2)
C1—C2—C3—C40.2 (4)C17—C18—C19—C200.2 (5)
C2—C3—C4—C50.1 (4)C18—C19—C20—C210.0 (5)
C2—C3—C4—Cl1178.79 (19)C19—C20—C21—C220.3 (5)
C3—C4—C5—C60.2 (4)C18—C17—C22—C210.1 (4)
Cl1—C4—C5—C6178.57 (18)N2—C17—C22—C21179.2 (3)
C4—C5—C6—C10.6 (4)C20—C21—C22—C170.4 (5)
C4—C5—C6—Cl2179.78 (19)O2—C8—N1—C95.3 (4)
O1—C1—C6—C5179.0 (2)C7—C8—N1—C9175.4 (2)
C2—C1—C6—C50.9 (4)C12—C9—N1—C821.0 (4)
O1—C1—C6—Cl20.6 (3)C10—C9—N1—C8158.0 (2)
C2—C1—C6—Cl2179.51 (19)C10—C11—N2—C120.3 (3)
O1—C7—C8—O2164.7 (3)C10—C11—N2—C17170.5 (2)
O1—C7—C8—N115.9 (3)C9—C12—N2—C110.7 (3)
C12—C9—C10—C111.5 (3)C13—C12—N2—C11173.6 (2)
N1—C9—C10—C11177.7 (2)C9—C12—N2—C17169.5 (2)
C12—C9—C10—C14174.7 (2)C13—C12—N2—C1716.2 (3)
N1—C9—C10—C146.1 (4)C18—C17—N2—C11126.0 (3)
C9—C10—C11—N21.1 (3)C22—C17—N2—C1154.7 (3)
C14—C10—C11—N2174.9 (2)C18—C17—N2—C1265.4 (3)
N1—C9—C12—N2177.8 (2)C22—C17—N2—C12113.9 (3)
C10—C9—C12—N21.3 (2)C2—C1—O1—C76.4 (3)
N1—C9—C12—C139.1 (4)C6—C1—O1—C7173.7 (2)
C10—C9—C12—C13171.7 (3)C8—C7—O1—C1172.4 (2)
C11—C10—C14—O3175.9 (2)O3—C14—O4—C150.9 (4)
C9—C10—C14—O30.5 (4)C10—C14—O4—C15177.4 (2)
C11—C10—C14—O42.5 (4)C16—C15—O4—C14179.6 (2)
C9—C10—C14—O4177.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.82 (2)2.15 (3)2.813 (3)137 (2)
C7—H7A···O2i0.972.573.341 (3)137
C3—H3···N3i0.932.613.312 (3)133
Symmetry code: (i) x+2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H17Cl2N3O4
Mr458.29
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)32.8846 (18), 7.6224 (4), 17.2834 (9)
γ (°) 89.773 (1)
V3)4332.2 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART 4K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.968, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
16521, 4279, 3034
Rint0.081
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.154, 0.99
No. of reflections4279
No. of parameters285
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.31

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.82 (2)2.15 (3)2.813 (3)137 (2)
C7—H7A···O2i0.972.573.341 (3)136.7
C3—H3···N3i0.932.613.312 (3)132.5
Symmetry code: (i) x+2, y, z+1/2.
 

Acknowledgements

We gratefully acknowledge financial support of this work by the Key Science Research Project of Hubei Provincial Department of Education (No. D20092406) and the Science Research Project of Yunyang Medical College (No. 2007QDJ14).

References

First citationBruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHe, P., Peng, X.-M. & Li, G.-H. (2007a). Acta Cryst. E63, o4884.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, P., Zheng, A., Cai, C.-Q. & Fang, C.-L. (2007b). Acta Cryst. E63, o3185.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, L. & Xu, S. (1995). Acta Pharm. Sin. 30, 556–560.  CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXue, S., Yan, L. & Fang, H. (2007). J. Shanghai Normal Univ. 36, 79–82.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds