metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-chlorido-bis­­[aqua­(2,2′-bi­pyridine-κ2N,N′)chloridocobalt(II)]

aDepartment of Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China, bCollege of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China, and cOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn

(Received 10 July 2009; accepted 15 July 2009; online 25 July 2009)

The title complex, [Co2Cl4(C10H8N2)2(H2O)2], is composed of two CoII atoms, each hexa­coordinated by three Cl atoms, one 2,2′-bipyridine (bpy) ligand and one water mol­ecule in a distorted octa­hedral geometry. Neighboring CoII atoms are linked together by two Cl bridges, forming a dinuclear CoII complex with inversion symmetry. There are inter­molecular O—H⋯Cl hydrogen bonds and inter­molecular ππ stacking inter­actions between adjacent bpy ligands [centroid–centroid distance = 3.617 (2) Å] in the structure.

Related literature

For Cl atoms acting as the bridging anions in transition metal complexes in multi-dimensional mol­ecule-based magnetic materials, see: Jian et al. (2005[Jian, F.-F., Wang, K.-F., Xiao, H.-L. & Qiao, Y.-B. (2005). Acta Cryst. E61, m1324-m1325.]). For related structures, see: Leznoff et al. (2003[Leznoff, D. B., Draper, N. D. & Batchelor, R. J. (2003). Polyhedron, 22, 1735-1743.]); Liu et al.(2004[Liu, L., Zhang, Q.-F. & Leung, W.-H. (2004). Acta Cryst. E60, m394-m395.]); Puschmann et al. (2001[Puschmann, H., Batsanov, A. S., Howard, J. A. K., Soto, B., Bonne, R. & Au-Alvarez, O. (2001). Acta Cryst. E57, m524-m526.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2Cl4(C10H8N2)2(H2O)2]

  • Mr = 608.06

  • Monoclinic, P 21 /n

  • a = 11.2939 (10) Å

  • b = 6.8969 (6) Å

  • c = 15.1339 (13) Å

  • β = 91.958 (3)°

  • V = 1178.14 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.89 mm−1

  • T = 293 K

  • 0.26 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.641, Tmax = 0.688

  • 11707 measured reflections

  • 2693 independent reflections

  • 2149 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.085

  • S = 1.03

  • 2693 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯Cl1i 0.82 2.81 3.407 (2) 132
O1—H1C⋯Cl1ii 0.85 2.39 3.213 (2) 162
Symmetry codes: (i) -x+2, -y, -z+1; (ii) x, y+1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the study of multidimensional molecule-based magnetic materials and other areas, the Cl atoms acting as the bridging anions has frequently been used to bridge transition metal complexes (Jian et al., 2005). Many such compounds have been reported (Leznoff et al., 2003; Liu et al., 2004; Puschmann et al., 2001). Herein, we reported the structure of the title CoII compound (I).

The two Co atoms are bridged by two Cl anions into a four-membered Co2Cl2 ring. The Co atom is six-coordinated by three Cl atoms, one water molecules and one 2,2'-bipy ligand in an octahedral geometry. The molecule has an inversion symmetry (Fig. 1). In the crystal structure, the intermolecular O—H···Cl hydrogen bonds connect the molecules of (I) into a one-dimensional chain structure. There are π-π stacking interactions between adjacent bpy (2,2'-bipyridine) ligands, where the centroid–centroid separations are 3.617 (2) Å. π-π stacking interaction existing in every two O—H···Cl hydrogen bonds chains, and forming pairs of complex molecules into a two-dimensional structure (Fig. 2). A supramolecular network structure is consolidated by π-π stacking and hydrogen bonds.

Related literature top

For Cl atoms acting as the bridging anions in transition metal complexes in multi-dimensional molecule-based magnetic materials, see: Jian et al. (2005). For related structures, see: Leznoff et al. (2003); Liu et al.(2004) ; Puschmann et al. (2001).

Experimental top

All chemicals used (reagent grade) were commercially available. To a 10 ml MeCN solution of cobalt dichloride hexahydrate (0.0238 g, 0.1 mmol), a 4 ml CH2Cl2 solution of 2,2'-bipyridine (0.0156 g, 0.1 mmol) was added dropwise with stirring. The resulting solution was continuously stirred for about 30 min, and then filtered. The filtrate was slowly evaporated at room temperature over several days, and colourless prism crystals suitable for X-ray analysis were obtained.

Refinement top

The positions of the C-bound H atoms were calculated geometrically and refined using a riding model with C-H = 0.93Å and Uiso(H) = 1.2Ueq(C). The positional parameters for the H atoms of the water molecule were placed geometrically and refined with a fixed Uiso of 0.05.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme and all hydrogen atoms. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code A: 2 - x, -y, 1 - z]
[Figure 2] Fig. 2. Crystal packing of the compound (I). Hydrogen bonds are shown as dashed lines.
Di-µ-chlorido-bis[aqua(2,2'-bipyridine- κ2N,N')chloridocobalt(II)] top
Crystal data top
[Co2Cl4(C10H8N2)2(H2O)2]F(000) = 612
Mr = 608.06Dx = 1.714 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 10382 reflections
a = 11.2939 (10) Åθ = 3.2–27.7°
b = 6.8969 (6) ŵ = 1.89 mm1
c = 15.1339 (13) ÅT = 293 K
β = 91.958 (3)°Prism, colourless
V = 1178.14 (18) Å30.26 × 0.20 × 0.20 mm
Z = 2
Data collection top
Rigaku SCXmini
diffractometer
2693 independent reflections
Radiation source: fine-focus sealed tube2149 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 8.192 pixels mm-1θmax = 27.5°, θmin = 3.3°
ω scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 88
Tmin = 0.641, Tmax = 0.688l = 1919
11707 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0346P)2 + 0.3472P]
where P = (Fo2 + 2Fc2)/3
2693 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Co2Cl4(C10H8N2)2(H2O)2]V = 1178.14 (18) Å3
Mr = 608.06Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.2939 (10) ŵ = 1.89 mm1
b = 6.8969 (6) ÅT = 293 K
c = 15.1339 (13) Å0.26 × 0.20 × 0.20 mm
β = 91.958 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2693 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2149 reflections with I > 2σ(I)
Tmin = 0.641, Tmax = 0.688Rint = 0.054
11707 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.03Δρmax = 0.41 e Å3
2693 reflectionsΔρmin = 0.49 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.84715 (3)0.03942 (5)0.50354 (2)0.02938 (12)
O10.90322 (17)0.3279 (3)0.55130 (12)0.0420 (5)
H1B0.96290.31710.58330.050*
H1C0.86390.42800.53570.050*
N10.71222 (19)0.0653 (3)0.59523 (14)0.0328 (5)
N20.70852 (19)0.1700 (3)0.42759 (14)0.0340 (5)
C10.7206 (3)0.0099 (4)0.67984 (19)0.0418 (7)
H1A0.78940.05240.69990.050*
C20.6322 (3)0.0407 (5)0.7389 (2)0.0504 (8)
H2A0.64180.00350.79770.060*
C30.5291 (3)0.1284 (4)0.7079 (2)0.0500 (8)
H3A0.46730.14930.74590.060*
C40.5178 (3)0.1848 (4)0.6209 (2)0.0441 (7)
H4A0.44850.24370.59950.053*
C50.6114 (2)0.1524 (4)0.56541 (18)0.0325 (6)
C60.6095 (2)0.2104 (4)0.47093 (19)0.0345 (6)
C70.5126 (3)0.2985 (4)0.4275 (2)0.0430 (7)
H7A0.44480.32720.45810.052*
C80.5184 (3)0.3423 (4)0.3396 (2)0.0513 (9)
H8A0.45430.40110.31020.062*
C90.6192 (3)0.2994 (4)0.2947 (2)0.0493 (8)
H9A0.62420.32750.23480.059*
C100.7123 (3)0.2134 (4)0.34111 (19)0.0430 (7)
H10A0.78070.18420.31130.052*
Cl10.79648 (6)0.29082 (10)0.45617 (5)0.0445 (2)
Cl20.99818 (6)0.07599 (10)0.39243 (4)0.03617 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0223 (2)0.0359 (2)0.0300 (2)0.00151 (15)0.00089 (14)0.00302 (16)
O10.0374 (11)0.0386 (11)0.0496 (12)0.0004 (9)0.0023 (9)0.0006 (10)
N10.0269 (12)0.0365 (12)0.0349 (12)0.0016 (10)0.0014 (9)0.0011 (10)
N20.0264 (12)0.0348 (12)0.0405 (13)0.0018 (9)0.0020 (10)0.0042 (10)
C10.0373 (17)0.0510 (17)0.0373 (15)0.0046 (13)0.0049 (13)0.0032 (13)
C20.052 (2)0.063 (2)0.0364 (16)0.0128 (17)0.0123 (15)0.0067 (15)
C30.0406 (18)0.0510 (19)0.060 (2)0.0077 (15)0.0227 (15)0.0188 (16)
C40.0323 (16)0.0383 (16)0.062 (2)0.0014 (13)0.0101 (14)0.0134 (15)
C50.0263 (14)0.0254 (13)0.0459 (15)0.0025 (11)0.0025 (12)0.0061 (12)
C60.0268 (14)0.0259 (13)0.0503 (16)0.0012 (11)0.0052 (12)0.0037 (12)
C70.0308 (15)0.0313 (15)0.066 (2)0.0051 (12)0.0099 (14)0.0088 (14)
C80.051 (2)0.0340 (16)0.066 (2)0.0049 (14)0.0279 (17)0.0019 (15)
C90.051 (2)0.0462 (18)0.0489 (18)0.0039 (15)0.0170 (15)0.0133 (15)
C100.0374 (16)0.0493 (18)0.0420 (16)0.0032 (13)0.0043 (13)0.0103 (14)
Cl10.0343 (4)0.0364 (4)0.0624 (5)0.0001 (3)0.0050 (3)0.0031 (3)
Cl20.0264 (3)0.0535 (4)0.0286 (3)0.0013 (3)0.0003 (3)0.0078 (3)
Geometric parameters (Å, º) top
Co1—N12.103 (2)C2—H2A0.9300
Co1—N22.112 (2)C3—C41.375 (4)
Co1—O12.2021 (18)C3—H3A0.9300
Co1—Cl2i2.4445 (7)C4—C51.391 (4)
Co1—Cl22.4488 (7)C4—H4A0.9300
Co1—Cl12.4497 (8)C5—C61.484 (4)
O1—H1B0.8200C6—C71.396 (4)
O1—H1C0.8500C7—C81.368 (4)
N1—C11.336 (3)C7—H7A0.9300
N1—C51.351 (3)C8—C91.377 (5)
N2—C101.345 (3)C8—H8A0.9300
N2—C61.345 (3)C9—C101.379 (4)
C1—C21.378 (4)C9—H9A0.9300
C1—H1A0.9300C10—H10A0.9300
C2—C31.380 (5)Cl2—Co1i2.4445 (7)
N1—Co1—N277.44 (8)C1—C2—H2A121.0
N1—Co1—O185.04 (8)C3—C2—H2A121.0
N2—Co1—O189.59 (8)C4—C3—C2119.9 (3)
N1—Co1—Cl2i96.93 (6)C4—C3—H3A120.1
N2—Co1—Cl2i171.68 (7)C2—C3—H3A120.1
O1—Co1—Cl2i83.78 (5)C3—C4—C5119.0 (3)
N1—Co1—Cl2169.00 (6)C3—C4—H4A120.5
N2—Co1—Cl295.92 (6)C5—C4—H4A120.5
O1—Co1—Cl286.16 (5)N1—C5—C4121.3 (3)
Cl2i—Co1—Cl288.66 (2)N1—C5—C6115.2 (2)
N1—Co1—Cl196.01 (6)C4—C5—C6123.5 (3)
N2—Co1—Cl194.35 (6)N2—C6—C7120.8 (3)
O1—Co1—Cl1176.05 (5)N2—C6—C5115.4 (2)
Cl2i—Co1—Cl192.31 (3)C7—C6—C5123.8 (3)
Cl2—Co1—Cl193.21 (3)C8—C7—C6119.4 (3)
Co1—O1—H1B109.5C8—C7—H7A120.3
Co1—O1—H1C120.1C6—C7—H7A120.3
H1B—O1—H1C130.4C7—C8—C9120.0 (3)
C1—N1—C5118.6 (2)C7—C8—H8A120.0
C1—N1—Co1125.36 (19)C9—C8—H8A120.0
C5—N1—Co1116.00 (17)C8—C9—C10118.0 (3)
C10—N2—C6118.9 (2)C8—C9—H9A121.0
C10—N2—Co1125.24 (19)C10—C9—H9A121.0
C6—N2—Co1115.86 (18)N2—C10—C9122.9 (3)
N1—C1—C2123.2 (3)N2—C10—H10A118.6
N1—C1—H1A118.4C9—C10—H10A118.6
C2—C1—H1A118.4Co1i—Cl2—Co191.34 (2)
C1—C2—C3118.0 (3)
N2—Co1—N1—C1179.5 (2)C1—N1—C5—C6179.7 (2)
O1—Co1—N1—C188.8 (2)Co1—N1—C5—C62.2 (3)
Cl2i—Co1—N1—C15.7 (2)C3—C4—C5—N10.6 (4)
Cl2—Co1—N1—C1125.8 (3)C3—C4—C5—C6178.9 (3)
Cl1—Co1—N1—C187.3 (2)C10—N2—C6—C70.9 (4)
N2—Co1—N1—C52.25 (17)Co1—N2—C6—C7179.38 (19)
O1—Co1—N1—C588.43 (18)C10—N2—C6—C5178.2 (2)
Cl2i—Co1—N1—C5171.53 (17)Co1—N2—C6—C51.5 (3)
Cl2—Co1—N1—C551.4 (4)N1—C5—C6—N20.5 (3)
Cl1—Co1—N1—C595.39 (17)C4—C5—C6—N2179.1 (2)
N1—Co1—N2—C10177.7 (2)N1—C5—C6—C7178.7 (2)
O1—Co1—N2—C1097.3 (2)C4—C5—C6—C71.8 (4)
Cl2—Co1—N2—C1011.2 (2)N2—C6—C7—C80.7 (4)
Cl1—Co1—N2—C1082.5 (2)C5—C6—C7—C8178.4 (3)
N1—Co1—N2—C61.99 (18)C6—C7—C8—C90.0 (4)
O1—Co1—N2—C683.02 (18)C7—C8—C9—C100.4 (4)
Cl2—Co1—N2—C6169.12 (17)C6—N2—C10—C90.5 (4)
Cl1—Co1—N2—C697.19 (18)Co1—N2—C10—C9179.8 (2)
C5—N1—C1—C21.3 (4)C8—C9—C10—N20.1 (4)
Co1—N1—C1—C2175.9 (2)N1—Co1—Cl2—Co1i120.8 (3)
N1—C1—C2—C31.8 (5)N2—Co1—Cl2—Co1i173.04 (6)
C1—C2—C3—C41.0 (5)O1—Co1—Cl2—Co1i83.85 (5)
C2—C3—C4—C50.1 (4)Cl2i—Co1—Cl2—Co1i0.0
C1—N1—C5—C40.1 (4)Cl1—Co1—Cl2—Co1i92.24 (3)
Co1—N1—C5—C4177.4 (2)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···Cl1i0.822.813.407 (2)132
O1—H1C···Cl1ii0.852.393.213 (2)162
Symmetry codes: (i) x+2, y, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Co2Cl4(C10H8N2)2(H2O)2]
Mr608.06
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.2939 (10), 6.8969 (6), 15.1339 (13)
β (°) 91.958 (3)
V3)1178.14 (18)
Z2
Radiation typeMo Kα
µ (mm1)1.89
Crystal size (mm)0.26 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.641, 0.688
No. of measured, independent and
observed [I > 2σ(I)] reflections
11707, 2693, 2149
Rint0.054
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.085, 1.03
No. of reflections2693
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.49

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···Cl1i0.822.813.407 (2)131.5
O1—H1C···Cl1ii0.852.393.213 (2)162.2
Symmetry codes: (i) x+2, y, z+1; (ii) x, y+1, z.
 

References

First citationJian, F.-F., Wang, K.-F., Xiao, H.-L. & Qiao, Y.-B. (2005). Acta Cryst. E61, m1324–m1325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLeznoff, D. B., Draper, N. D. & Batchelor, R. J. (2003). Polyhedron, 22, 1735–1743.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, L., Zhang, Q.-F. & Leung, W.-H. (2004). Acta Cryst. E60, m394–m395.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPuschmann, H., Batsanov, A. S., Howard, J. A. K., Soto, B., Bonne, R. & Au-Alvarez, O. (2001). Acta Cryst. E57, m524–m526.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds