organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-{[(5-Methyl-2-fur­yl)methyl­ene]hydrazinocarbon­yl}pyridinium chloride monohydrate

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 15 July 2009; accepted 18 July 2009; online 25 July 2009)

The title compound, C12H12N3O2+·Cl·H2O, was prepared by the reaction of N′-[(5-methyl-2-fur­yl)methyl­ene]isonicotino­hydrazide and hydro­chloric acid at room temperature. The entire molecule is approximately planar with a maximum deviation of 0.047 (2) Å. An intramolecular C—H⋯O interaction is observed. O—H⋯Cl, N—H⋯Cl, N—H⋯O, N—H⋯N, C—H⋯Cl and C—H⋯O hydrogen-bonds stabilize the crystal structure.

Related literature

Schiff bases have been used extensively as ligands in the field of coordination chemistry, see: Cui et al. (2005[Cui, S.-L., Zhou, F.-Y. & Lin, X.-F. (2005). Acta Cryst. E61, o3198-o3199.]). For their anti­microbial and anti­cancer applications, see: Tarafder et al. (2000[Tarafder, M. T. H., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem. 25, 456-460.]) and Deschamps et al. (2003[Deschamps, P., Kulkarni, P. P. & Sarkar, B. (2003). Inorg. Chem. 42, 7366-7368.]), respectively.

[Scheme 1]

Experimental

Crystal data
  • C12H12N3O2+·Cl·H2O

  • Mr = 283.71

  • Monoclinic, P 21 /c

  • a = 8.5258 (17) Å

  • b = 14.435 (3) Å

  • c = 13.625 (4) Å

  • β = 123.55 (2)°

  • V = 1397.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.11 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: none

  • 13328 measured reflections

  • 3187 independent reflections

  • 2715 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.107

  • S = 1.07

  • 3187 reflections

  • 180 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W1⋯Cl1i 0.86 (3) 2.40 (3) 3.229 (3) 162 (3)
O1W—H1W1⋯Cl1ii 0.72 (3) 2.51 (3) 3.225 (3) 177 (2)
N2—H2A⋯Cl1i 0.86 2.39 3.2243 (15) 164
N3—H3A⋯O2ii 0.86 1.89 2.639 (2) 144
N3—H3A⋯N1ii 0.86 2.50 3.2238 (18) 142
C3—H3B⋯Cl1iii 0.93 2.76 3.6574 (19) 162
C6—H6A⋯Cl1i 0.93 2.69 3.5374 (18) 151
C9—H9A⋯Cl1i 0.93 2.64 3.5656 (18) 171
C11—H11A⋯O1ii 0.93 2.45 3.1694 (19) 135
C12—H12A⋯O2 0.93 2.39 2.713 (2) 100
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [x-1, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y, -z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have been used extensively as ligands in the field of coordination chemistry (Cui et al., 2005). And they have antimicrobial (Tarafder et al., 2000) and anticancer applications (Deschamps et al., 2003). The title compound (I) was synthesized and we report its crystal structure here.

In the crystal structure of (I) (Fig. 1), the carbon and nitrogen atoms are nearly the same plane with a maximum deviation of 0.047Å for N2. There are intra- and intermolecular O—H···Cl, N—H···Cl, N—H···O, N—H···N, C—H···Cl and C—H···O hydrogen-bonds to stabilize the crystal structure (Table 1).

Related literature top

Schiff bases have been used extensively as ligands in the field of coordination chemistry, see: Cui et al. (2005). For their antimicrobial and anticancer applications, see: Tarafder et al. (2000) and Deschamps et al. (2003), respectively.

Experimental top

A mixture of N'-[(5-methyl-2-furyl)methylene]isonicotinohydrazide (0.02 mol) and hydrochloric acid (0.01 mol) was stirred with ethanol (50 ml) at 298 K for 2 h, then afford the title compound (2.61 g, yield 92%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol and trichloromethane (1:1) at room temperature.

Refinement top

The H atoms of the water molecule were found from a difference Fourier map and refined freely. The other H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H and N—H distances of 0.93–0.96 and 0.86 Å, and with Uiso = 1.2–1.5Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
4-{[(5-Methyl-2-furyl)methylene]hydrazinocarbonyl}pyridinium chloride monohydrate top
Crystal data top
C12H12N3O2+·Cl·H2OF(000) = 592
Mr = 283.71Dx = 1.348 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2715 reflections
a = 8.5258 (17) Åθ = 3.1–27.5°
b = 14.435 (3) ŵ = 0.28 mm1
c = 13.625 (4) ÅT = 293 K
β = 123.55 (2)°Bar, yellow
V = 1397.5 (7) Å30.20 × 0.15 × 0.11 mm
Z = 4
Data collection top
Bruker P4
diffractometer
2715 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
Detector resolution: 3 pixels mm-1h = 1011
ω scansk = 1818
13328 measured reflectionsl = 1717
3187 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.3029P]
where P = (Fo2 + 2Fc2)/3
3187 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C12H12N3O2+·Cl·H2OV = 1397.5 (7) Å3
Mr = 283.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5258 (17) ŵ = 0.28 mm1
b = 14.435 (3) ÅT = 293 K
c = 13.625 (4) Å0.20 × 0.15 × 0.11 mm
β = 123.55 (2)°
Data collection top
Bruker P4
diffractometer
2715 reflections with I > 2σ(I)
13328 measured reflectionsRint = 0.026
3187 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.27 e Å3
3187 reflectionsΔρmin = 0.21 e Å3
180 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.22892 (6)0.42533 (3)0.18006 (4)0.06023 (16)
O10.51022 (13)0.04123 (6)0.13453 (8)0.0380 (2)
O20.05971 (14)0.22008 (7)0.02944 (10)0.0536 (3)
N10.16922 (14)0.04732 (7)0.03026 (9)0.0327 (2)
N20.00554 (14)0.08118 (7)0.11953 (9)0.0327 (2)
H2A0.08440.04670.17780.039*
N30.57485 (15)0.28167 (8)0.36865 (9)0.0392 (3)
H3A0.68220.30570.41980.047*
C10.8247 (2)0.07121 (14)0.30399 (16)0.0616 (5)
H1B0.91410.12090.33970.092*
H1C0.87790.02150.28470.092*
H1D0.79410.04930.35800.092*
C20.65193 (19)0.10503 (11)0.19547 (13)0.0419 (3)
C30.5985 (2)0.18739 (10)0.14057 (14)0.0469 (4)
H3B0.66950.24150.16410.056*
C40.4137 (2)0.17617 (10)0.04032 (13)0.0441 (3)
H4A0.33950.22160.01450.053*
C50.36538 (19)0.08648 (9)0.03927 (12)0.0354 (3)
C60.19437 (19)0.03842 (9)0.04240 (11)0.0359 (3)
H6A0.09780.07070.10670.043*
C70.04668 (16)0.16914 (9)0.11160 (10)0.0321 (3)
C80.23608 (16)0.20547 (8)0.20798 (10)0.0301 (3)
C90.37266 (17)0.15335 (9)0.30253 (11)0.0365 (3)
H9A0.34950.09200.31150.044*
C100.54274 (18)0.19394 (10)0.38265 (11)0.0404 (3)
H10A0.63560.16010.44680.049*
C110.4484 (2)0.33342 (10)0.27924 (13)0.0441 (3)
H11A0.47680.39420.27210.053*
C120.27438 (19)0.29683 (9)0.19686 (12)0.0413 (3)
H12A0.18370.33300.13460.050*
O1W0.3179 (3)0.06393 (18)0.5308 (2)0.1060 (7)
H2W10.282 (4)0.0189 (19)0.481 (2)0.093 (8)*
H1W10.419 (4)0.0676 (18)0.566 (2)0.084 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0599 (3)0.0341 (2)0.0513 (2)0.00819 (16)0.00847 (19)0.00564 (15)
O10.0337 (5)0.0317 (5)0.0423 (5)0.0068 (4)0.0170 (4)0.0055 (4)
O20.0291 (5)0.0402 (5)0.0497 (6)0.0051 (4)0.0044 (4)0.0125 (5)
N10.0253 (5)0.0331 (5)0.0312 (5)0.0053 (4)0.0104 (4)0.0060 (4)
N20.0240 (5)0.0305 (5)0.0292 (5)0.0022 (4)0.0056 (4)0.0012 (4)
N30.0252 (5)0.0466 (7)0.0317 (5)0.0085 (5)0.0070 (4)0.0110 (5)
C10.0368 (8)0.0758 (12)0.0565 (10)0.0073 (8)0.0159 (7)0.0122 (9)
C20.0348 (6)0.0454 (7)0.0472 (8)0.0143 (6)0.0236 (6)0.0167 (6)
C30.0515 (8)0.0396 (7)0.0572 (9)0.0204 (7)0.0348 (7)0.0155 (7)
C40.0531 (8)0.0334 (7)0.0484 (8)0.0089 (6)0.0297 (7)0.0025 (6)
C50.0377 (7)0.0321 (6)0.0359 (6)0.0053 (5)0.0200 (6)0.0047 (5)
C60.0348 (6)0.0332 (6)0.0335 (6)0.0030 (5)0.0151 (5)0.0032 (5)
C70.0221 (5)0.0321 (6)0.0305 (6)0.0002 (5)0.0072 (5)0.0007 (5)
C80.0217 (5)0.0319 (6)0.0282 (5)0.0003 (5)0.0084 (5)0.0021 (5)
C90.0278 (6)0.0365 (6)0.0326 (6)0.0007 (5)0.0089 (5)0.0038 (5)
C100.0262 (6)0.0476 (8)0.0302 (6)0.0008 (6)0.0047 (5)0.0022 (5)
C110.0386 (7)0.0333 (7)0.0435 (7)0.0094 (6)0.0120 (6)0.0066 (6)
C120.0319 (6)0.0307 (6)0.0384 (7)0.0011 (5)0.0050 (5)0.0010 (5)
O1W0.0743 (12)0.152 (2)0.0905 (13)0.0102 (12)0.0446 (11)0.0516 (13)
Geometric parameters (Å, º) top
O1—C51.3655 (17)C3—H3B0.9300
O1—C21.3742 (16)C4—C51.3566 (19)
O2—C71.2225 (16)C4—H4A0.9300
N1—C61.2823 (17)C5—C61.4324 (18)
N1—N21.3911 (14)C6—H6A0.9300
N2—C71.3375 (16)C7—C81.5044 (16)
N2—H2A0.8600C8—C121.3868 (18)
N3—C111.3239 (18)C8—C91.3869 (17)
N3—C101.3314 (19)C9—C101.3741 (18)
N3—H3A0.8600C9—H9A0.9300
C1—C21.479 (2)C10—H10A0.9300
C1—H1B0.9600C11—C121.3780 (18)
C1—H1C0.9600C11—H11A0.9300
C1—H1D0.9600C12—H12A0.9300
C2—C31.343 (2)O1W—H2W10.87 (3)
C3—C41.412 (2)O1W—H1W10.72 (3)
C5—O1—C2106.56 (11)C4—C5—C6130.05 (13)
C6—N1—N2113.64 (11)O1—C5—C6120.28 (11)
C7—N2—N1117.70 (10)N1—C6—C5122.56 (12)
C7—N2—H2A121.1N1—C6—H6A118.7
N1—N2—H2A121.1C5—C6—H6A118.7
C11—N3—C10122.76 (11)O2—C7—N2123.37 (11)
C11—N3—H3A118.6O2—C7—C8119.01 (11)
C10—N3—H3A118.6N2—C7—C8117.61 (10)
C2—C1—H1B109.5C12—C8—C9119.33 (11)
C2—C1—H1C109.5C12—C8—C7116.11 (11)
H1B—C1—H1C109.5C9—C8—C7124.53 (11)
C2—C1—H1D109.5C10—C9—C8118.83 (13)
H1B—C1—H1D109.5C10—C9—H9A120.6
H1C—C1—H1D109.5C8—C9—H9A120.6
C3—C2—O1110.02 (13)N3—C10—C9120.13 (12)
C3—C2—C1133.87 (14)N3—C10—H10A119.9
O1—C2—C1116.11 (14)C9—C10—H10A119.9
C2—C3—C4106.92 (13)N3—C11—C12119.73 (13)
C2—C3—H3B126.5N3—C11—H11A120.1
C4—C3—H3B126.5C12—C11—H11A120.1
C5—C4—C3106.83 (14)C11—C12—C8119.21 (12)
C5—C4—H4A126.6C11—C12—H12A120.4
C3—C4—H4A126.6C8—C12—H12A120.4
C4—C5—O1109.67 (12)H2W1—O1W—H1W1111 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W1···Cl1i0.86 (3)2.40 (3)3.229 (3)162 (3)
O1W—H1W1···Cl1ii0.72 (3)2.51 (3)3.225 (3)177 (2)
N2—H2A···Cl1i0.862.393.2243 (15)164
N3—H3A···O2ii0.861.892.639 (2)144
N3—H3A···N1ii0.862.503.2238 (18)142
C3—H3B···Cl1iii0.932.763.6574 (19)162
C6—H6A···Cl1i0.932.693.5374 (18)151
C9—H9A···Cl1i0.932.643.5656 (18)171
C11—H11A···O1ii0.932.453.1694 (19)135
C12—H12A···O20.932.392.713 (2)100
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y1/2, z1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H12N3O2+·Cl·H2O
Mr283.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.5258 (17), 14.435 (3), 13.625 (4)
β (°) 123.55 (2)
V3)1397.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.20 × 0.15 × 0.11
Data collection
DiffractometerBruker P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13328, 3187, 2715
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.107, 1.07
No. of reflections3187
No. of parameters180
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.21

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W1···Cl1i0.86 (3)2.40 (3)3.229 (3)162 (3)
O1W—H1W1···Cl1ii0.72 (3)2.51 (3)3.225 (3)177 (2)
N2—H2A···Cl1i0.86002.39003.2243 (15)164.00
N3—H3A···O2ii0.86001.89002.639 (2)144.00
N3—H3A···N1ii0.86002.50003.2238 (18)142.00
C3—H3B···Cl1iii0.93002.76003.6574 (19)162.00
C6—H6A···Cl1i0.93002.69003.5374 (18)151.00
C9—H9A···Cl1i0.93002.64003.5656 (18)171.00
C11—H11A···O1ii0.93002.45003.1694 (19)135.00
C12—H12A···O20.93002.39002.713 (2)100.00
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y1/2, z1/2; (iii) x+1, y, z.
 

Acknowledgements

The authors would like to thank the Natural Science Foundation of Shandong Province (No.Y2008B30).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, S.-L., Zhou, F.-Y. & Lin, X.-F. (2005). Acta Cryst. E61, o3198–o3199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDeschamps, P., Kulkarni, P. P. & Sarkar, B. (2003). Inorg. Chem. 42, 7366–7368.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem. 25, 456–460.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds