metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[tetra­aqua­manganese(II)]-μ-4,4′-bi­pyridine] bis­­(3-hy­droxy­cinnamate) dihydrate]

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: wyh@zjnu.edu.cn

(Received 15 July 2009; accepted 17 July 2009; online 22 July 2009)

The title compound, {[Mn(C10H8N2)(H2O)4](C9H7O3)2·2H2O}n, was obtained by the hydro­thermal reaction of manganese chloride with mixed 3-hydroxy­lcinnamic acid (H2L) and 4,4′-bipyridine (4,4′-bipy) ligands. The structure contains [Mn(C10H8N2)(H2O)4]2+ cations with the MnII atoms lying on a centres of inversion and bridged into a linear chain along the a axis by 4,4′-bipy ligands, surrounded by HL anions and uncoordinated water mol­ecules. Extensive O—H⋯O hydrogen-bonding and weak ππ inter­actions [centroid–centroid distance = 3.7572  (3) Å] between the constituents lead to the formation of a three-dimensional supra­molecular network.

Related literature

For potential applications of compounds with supramolecular architectures, see: Niu et al. (2008[Niu, C. Y., Wu, B. L., Zheng, X. F., Zhang, H. Y., Hou, H. W., Niu, Y. Y. & Li, Z. J. (2008). Cryst. Growth Des. 8, 1566-1574.]); Xue et al. (2007[Xue, D. X., Lin, Y. Y., Cheng, X. N. & Cheng, X. M. (2007). Cryst. Growth Des. 7, 1332-1336.]); Ye et al. (2005[Ye, B. H., Tong, M. L. & Chen, X. M. (2005). Coord. Chem. Rev. 249, 545-565.]); Zhang et al. (2009[Zhang, L., Li, Z. J., Lin, Q. P., Qin, Y. Y., Zhang, J., Yin, P. X., Cheng, J. K. & Yao, Y. G. (2009). Inorg. Chem. 48, 6517-6525.]). For the synthesis of supra­molecular coordination compounds containing 4-pyridyl and carboxyl­ate groups, see: Feng et al. (2008[Feng, X., Tang, Z. W., Feng, Y. L., Lan, Y. Z. & Wen, Y. H. (2008). Chin. J. Inorg. Chem. 24, 1713-1717.]); He et al. (2007[He, Y. H., Feng, X., Feng, Y. L., Sun, H. & Wen, Y. H. (2007). Chin. J. Inorg. Chem. 23, 1805-1808.]); Li et al. (2008[Li, W. X., Feng, X., Feng, Y. L. & Wen, Y. H. (2008). Chin. J. Struct. Chem. 27, 701-706.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C10H8N2)(H2O)4](C9H7O3)2·2H2O

  • Mr = 645.51

  • Monoclinic, P 21 /c

  • a = 11.6620 (12) Å

  • b = 11.2726 (13) Å

  • c = 11.6238 (13) Å

  • β = 96.520 (9)°

  • V = 1518.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 296 K

  • 0.21 × 0.14 × 0.07 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.92, Tmax = 0.97

  • 13208 measured reflections

  • 3513 independent reflections

  • 2293 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.118

  • S = 1.04

  • 3513 reflections

  • 217 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3W—H3WA⋯O2i 0.832 (16) 1.912 (18) 2.738 (2) 171 (3)
O1W—H1WA⋯O1ii 0.833 (17) 1.888 (17) 2.719 (2) 174 (3)
O2W—H2WA⋯O3Wiii 0.815 (17) 2.024 (17) 2.838 (3) 176 (3)
O3W—H3WB⋯O2iv 0.842 (16) 1.902 (18) 2.741 (2) 174 (3)
O2W—H2WB⋯O1v 0.832 (16) 1.878 (16) 2.702 (2) 171 (3)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+2, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iv) x-1, y, z; (v) -x+2, -y+1, -z-1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The construction of supramolecular architectures based on metal and organic building blocks is currently of great interest for their aesthetic architectures and potential functions such as adsorption, ion exchange, magnetic and luminescent materials (Niu et al., 2008; Xue et al., 2007; Ye et al., 2005; Zhang et al., 2009). Recently, we are interested in the synthesis of novel supramolecular coordination compounds which contain not only 4-pyridyl but also carboxylate groups in the crystal structure (He et al., 2007; Feng et al., 2008; Li et al., 2008). Here we report the crystal structure of the title compound, [Mn(C10H8N2)(H2O)4]2.2(C9H7O3).2H2O, (I).

The present X-ray single-crystal diffraction study reveals that (I) is a new coordination polymer involving Mn2+ and 3-hydroxycinnamate anions, as shown in Fig. 1. The MnII is hexacoordinated in an octahedral manner by four water molecules in the equatorial plane and two N atoms in the axial positions from two 4,4'-bipyridine molecules. The bond lengths of Mn—N and Mn—O are 2.2863 (17) Å and in the range 2.1641 (15)—2.1675 (17) Å, respectively. As shown in Fig. 2, the linear cationic chains, 3-Hydroxycinnamate anions and lattice water molecules are linked together through a series of O—H···O bonds with the hydrogen bonds lengths in the range of 2.702 (2)—2.838 (3) Å and bond angles between 171 (3) and 176 (3) °. The extensive hydrogen bonds together with the weak π-π interactions between hca- anions and 4,4'-bipyridine (the centroid-to-centroid distance is 3.7572 Å) stabilize the crystal structure, forming a three-dimensional network.

Related literature top

For potential applications of supramolecular architectures, see: Niu et al. (2008); Xue et al. (2007); Ye et al. (2005); Zhang et al. (2009). For the synthesis of supramolecular coordination compounds containing 4-pyridyl and carboxylate groups, see: Feng et al. (2008); He et al. (2007); Li et al. (2008).

Experimental top

MnCl2.4H2O (0.0973 g, 0.5 mmol), 3-hydroxycinnamic acid (0.1619 g, 1 mmol), NaOH (0.0405 g, 1 mmol), 4,4'-bipy (0.1562 g, 1 mmol) and H2O-ethanol (4:1, 15 mL) was sealed in a 25 ml stainless-steel reactor with a Telflon liner and was heated at 433 K for 3 d, then the reactor was cooled slowly to room temperature. The solution was filtered, giving yellow single crystals suitable for X-ray analysis in yield 30%.

Refinement top

The carbon-bound H-atoms were positioned geometrically and included in the refinement using a riding model [C—H 0.93 Å Uiso(H) = 1.2Ueq(C)]. The water and hydroxyl H atoms were located from different maps, and their positions were refined isotropically, with O—H distances fixed by Owater—H = 0.85 (2) Å, Ohydroxyl—H = 0.96 (2) Å and H—H = 1.30 (2) Å, their displacement parameters were set to 1.5Ueq(Owater) and 1.2Ueq(Ohydroxyl).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity. [Symmetry codes: (i) 2 - x, 1 - y, -1 - z; (ii) 3 - x, 1 - y, 1 - z; (iii) -1 + x, y, z]
[Figure 2] Fig. 2. Packing diagram showing hydrogen bonds as dashed lines. All H atoms have been omitted for clarity.
catena-Poly[[[tetraaquamanganese(II)]-µ-4,4'-bipyridine] bis(3-hydroxycinnamate) dihydrate] top
Crystal data top
[Mn(C10H8N2)(H2O)4](C9H7O3)2·2H2OF(000) = 674
Mr = 645.51Dx = 1.412 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1488 reflections
a = 11.6620 (12) Åθ = 1.8–27.7°
b = 11.2726 (13) ŵ = 0.50 mm1
c = 11.6238 (13) ÅT = 296 K
β = 96.520 (9)°Block, yellow
V = 1518.2 (3) Å30.21 × 0.14 × 0.07 mm
Z = 2
Data collection top
Bruker APEXII area-detector
diffractometer
3513 independent reflections
Radiation source: fine-focus sealed tube2293 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ω scansθmax = 27.7°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1514
Tmin = 0.92, Tmax = 0.97k = 1414
13208 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.0147P]
where P = (Fo2 + 2Fc2)/3
3513 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.21 e Å3
10 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Mn(C10H8N2)(H2O)4](C9H7O3)2·2H2OV = 1518.2 (3) Å3
Mr = 645.51Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.6620 (12) ŵ = 0.50 mm1
b = 11.2726 (13) ÅT = 296 K
c = 11.6238 (13) Å0.21 × 0.14 × 0.07 mm
β = 96.520 (9)°
Data collection top
Bruker APEXII area-detector
diffractometer
3513 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2293 reflections with I > 2σ(I)
Tmin = 0.92, Tmax = 0.97Rint = 0.060
13208 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04410 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.21 e Å3
3513 reflectionsΔρmin = 0.31 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn11.00000.50000.50000.02932 (15)
C11.24961 (19)0.5744 (2)0.5720 (2)0.0384 (6)
H1A1.20600.63050.61640.046*
C21.36718 (19)0.5795 (2)0.5695 (2)0.0383 (6)
H2A1.40080.63760.61160.046*
C31.43615 (18)0.4985 (2)0.50437 (18)0.0316 (5)
C41.3781 (2)0.4144 (3)0.4478 (3)0.0657 (9)
H4A1.41930.35610.40420.079*
C51.2599 (2)0.4158 (3)0.4553 (3)0.0652 (9)
H5A1.22390.35750.41560.078*
C60.3636 (2)0.6015 (2)0.1614 (2)0.0479 (6)
C70.2912 (2)0.6654 (3)0.2419 (2)0.0529 (7)
H7A0.21150.65980.24230.063*
C80.3368 (2)0.7364 (3)0.3205 (2)0.0519 (7)
H8A0.28810.78020.37340.062*
C90.4546 (2)0.7436 (2)0.3218 (2)0.0479 (7)
H9A0.48490.79280.37510.057*
C100.5288 (2)0.6779 (2)0.2439 (2)0.0397 (6)
C110.4815 (2)0.6072 (2)0.1637 (2)0.0454 (6)
H11A0.52990.56300.11080.055*
C120.6538 (2)0.6860 (2)0.2478 (2)0.0403 (6)
H12A0.67950.74410.29560.048*
C130.7334 (2)0.6189 (2)0.1900 (2)0.0425 (6)
H13A0.70980.56210.13970.051*
C140.8572 (2)0.6292 (2)0.20085 (19)0.0377 (6)
N11.19366 (15)0.49461 (16)0.51532 (16)0.0353 (4)
O10.89468 (15)0.71680 (16)0.25223 (15)0.0487 (5)
O1W1.02880 (17)0.43379 (17)0.32434 (13)0.0502 (5)
H1WA1.049 (3)0.3672 (17)0.298 (3)0.075*
H1WB1.004 (3)0.472 (2)0.272 (2)0.075*
O20.92237 (14)0.54517 (16)0.15829 (14)0.0443 (4)
O2W0.98772 (18)0.31913 (16)0.56349 (17)0.0531 (5)
H2WA0.955 (3)0.260 (2)0.542 (3)0.080*
H2WB1.022 (3)0.300 (3)0.620 (2)0.080*
O30.32335 (17)0.5320 (2)0.0786 (2)0.0769 (7)
H30.2485 (18)0.551 (3)0.074 (3)0.092*
O3W0.11487 (15)0.61016 (17)0.01468 (16)0.0480 (5)
H3WA0.110 (2)0.566 (2)0.0420 (18)0.072*
H3WB0.058 (2)0.593 (3)0.0630 (19)0.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0232 (3)0.0318 (3)0.0335 (2)0.0007 (2)0.00570 (18)0.0012 (2)
C10.0256 (13)0.0441 (15)0.0449 (13)0.0012 (10)0.0012 (10)0.0104 (11)
C20.0261 (13)0.0458 (15)0.0431 (12)0.0034 (10)0.0039 (10)0.0140 (11)
C30.0237 (11)0.0340 (12)0.0377 (11)0.0004 (10)0.0063 (9)0.0002 (10)
C40.0266 (15)0.066 (2)0.106 (2)0.0109 (13)0.0130 (14)0.0522 (18)
C50.0276 (15)0.064 (2)0.106 (2)0.0062 (13)0.0183 (15)0.0493 (18)
C60.0354 (15)0.0512 (17)0.0569 (15)0.0013 (12)0.0047 (12)0.0016 (13)
C70.0354 (15)0.066 (2)0.0553 (16)0.0066 (13)0.0035 (12)0.0148 (14)
C80.0446 (17)0.0655 (19)0.0433 (14)0.0151 (14)0.0059 (12)0.0087 (13)
C90.0500 (18)0.0548 (17)0.0384 (13)0.0082 (13)0.0030 (12)0.0054 (12)
C100.0356 (14)0.0437 (15)0.0393 (12)0.0037 (11)0.0018 (10)0.0100 (11)
C110.0318 (14)0.0513 (16)0.0526 (15)0.0061 (12)0.0019 (11)0.0024 (12)
C120.0404 (15)0.0417 (15)0.0396 (12)0.0002 (12)0.0080 (11)0.0057 (11)
C130.0372 (14)0.0433 (15)0.0485 (14)0.0013 (11)0.0106 (11)0.0009 (12)
C140.0373 (14)0.0422 (14)0.0347 (12)0.0033 (11)0.0082 (10)0.0094 (11)
N10.0240 (10)0.0362 (11)0.0467 (10)0.0030 (9)0.0089 (8)0.0047 (9)
O10.0520 (11)0.0422 (11)0.0552 (10)0.0082 (9)0.0199 (9)0.0059 (8)
O1W0.0615 (13)0.0542 (12)0.0363 (9)0.0249 (10)0.0118 (8)0.0075 (8)
O20.0343 (10)0.0513 (11)0.0481 (9)0.0056 (8)0.0079 (8)0.0013 (8)
O2W0.0644 (13)0.0367 (10)0.0639 (12)0.0111 (9)0.0321 (10)0.0091 (9)
O30.0394 (12)0.0962 (17)0.0977 (16)0.0068 (12)0.0190 (12)0.0337 (14)
O3W0.0375 (11)0.0509 (12)0.0554 (11)0.0055 (9)0.0040 (8)0.0011 (9)
Geometric parameters (Å, º) top
Mn1—O1W2.1641 (15)C7—H7A0.9300
Mn1—O1Wi2.1641 (15)C8—C91.378 (4)
Mn1—O2Wi2.1675 (17)C8—H8A0.9300
Mn1—O2W2.1675 (17)C9—C101.393 (3)
Mn1—N1i2.2863 (17)C9—H9A0.9300
Mn1—N12.2863 (17)C10—C111.388 (3)
C1—N11.329 (3)C10—C121.466 (3)
C1—C21.369 (3)C11—H11A0.9300
C1—H1A0.9300C12—C131.320 (3)
C2—C31.385 (3)C12—H12A0.9300
C2—H2A0.9300C13—C141.468 (3)
C3—C41.375 (3)C13—H13A0.9300
C3—C3ii1.482 (4)C14—O11.258 (3)
C4—C51.371 (3)C14—O21.278 (3)
C4—H4A0.9300O1W—H1WA0.833 (17)
C5—N11.323 (3)O1W—H1WB0.825 (16)
C5—H5A0.9300O2W—H2WA0.815 (17)
C6—O31.364 (3)O2W—H2WB0.832 (16)
C6—C111.380 (3)O3—H30.908 (18)
C6—C71.388 (4)O3W—H3WA0.832 (16)
C7—C81.368 (4)O3W—H3WB0.842 (16)
O1W—Mn1—O1Wi180.00 (10)C8—C7—H7A120.0
O1W—Mn1—O2Wi90.34 (8)C6—C7—H7A120.0
O1Wi—Mn1—O2Wi89.66 (8)C7—C8—C9120.4 (3)
O1W—Mn1—O2W89.66 (8)C7—C8—H8A119.8
O1Wi—Mn1—O2W90.34 (8)C9—C8—H8A119.8
O2Wi—Mn1—O2W180.00 (10)C8—C9—C10120.6 (3)
O1W—Mn1—N1i89.11 (7)C8—C9—H9A119.7
O1Wi—Mn1—N1i90.89 (7)C10—C9—H9A119.7
O2Wi—Mn1—N1i88.63 (7)C11—C10—C9118.5 (2)
O2W—Mn1—N1i91.37 (7)C11—C10—C12121.9 (2)
O1W—Mn1—N190.89 (7)C9—C10—C12119.6 (2)
O1Wi—Mn1—N189.11 (7)C6—C11—C10120.8 (2)
O2Wi—Mn1—N191.37 (7)C6—C11—H11A119.6
O2W—Mn1—N188.63 (7)C10—C11—H11A119.6
N1i—Mn1—N1180.0C13—C12—C10126.4 (2)
N1—C1—C2124.4 (2)C13—C12—H12A116.8
N1—C1—H1A117.8C10—C12—H12A116.8
C2—C1—H1A117.8C12—C13—C14123.6 (2)
C1—C2—C3120.1 (2)C12—C13—H13A118.2
C1—C2—H2A119.9C14—C13—H13A118.2
C3—C2—H2A119.9O1—C14—O2122.8 (2)
C4—C3—C2115.4 (2)O1—C14—C13120.0 (2)
C4—C3—C3ii122.0 (3)O2—C14—C13117.1 (2)
C2—C3—C3ii122.6 (2)C5—N1—C1115.2 (2)
C5—C4—C3120.5 (2)C5—N1—Mn1119.98 (15)
C5—C4—H4A119.7C1—N1—Mn1124.44 (15)
C3—C4—H4A119.7Mn1—O1W—H1WA132 (2)
N1—C5—C4124.3 (2)Mn1—O1W—H1WB119 (2)
N1—C5—H5A117.8H1WA—O1W—H1WB108 (2)
C4—C5—H5A117.8Mn1—O2W—H2WA133 (2)
O3—C6—C11117.6 (2)Mn1—O2W—H2WB119 (2)
O3—C6—C7122.8 (2)H2WA—O2W—H2WB108 (2)
C11—C6—C7119.6 (3)C6—O3—H3108 (2)
C8—C7—C6120.1 (3)H3WA—O3W—H3WB105 (2)
N1—C1—C2—C30.3 (4)C9—C10—C12—C13171.1 (2)
C1—C2—C3—C41.7 (4)C10—C12—C13—C14177.8 (2)
C1—C2—C3—C3ii178.3 (3)C12—C13—C14—O111.9 (4)
C2—C3—C4—C51.6 (4)C12—C13—C14—O2166.8 (2)
C3ii—C3—C4—C5178.3 (3)C4—C5—N1—C11.2 (4)
C3—C4—C5—N10.2 (5)C4—C5—N1—Mn1171.9 (3)
O3—C6—C7—C8178.0 (3)C2—C1—N1—C51.2 (4)
C11—C6—C7—C82.1 (4)C2—C1—N1—Mn1171.64 (19)
C6—C7—C8—C91.1 (4)O1W—Mn1—N1—C529.3 (2)
C7—C8—C9—C100.6 (4)O1Wi—Mn1—N1—C5150.7 (2)
C8—C9—C10—C111.4 (3)O2Wi—Mn1—N1—C5119.6 (2)
C8—C9—C10—C12179.3 (2)O2W—Mn1—N1—C560.4 (2)
O3—C6—C11—C10178.7 (2)O1W—Mn1—N1—C1143.18 (19)
C7—C6—C11—C101.4 (4)O1Wi—Mn1—N1—C136.82 (19)
C9—C10—C11—C60.4 (4)O2Wi—Mn1—N1—C152.81 (19)
C12—C10—C11—C6179.6 (2)O2W—Mn1—N1—C1127.19 (19)
C11—C10—C12—C139.7 (4)
Symmetry codes: (i) x+2, y+1, z1; (ii) x+3, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H3WA···O2iii0.83 (2)1.91 (2)2.738 (2)171 (3)
O1W—H1WA···O1iv0.83 (2)1.89 (2)2.719 (2)174 (3)
O2W—H2WA···O3Wv0.82 (2)2.02 (2)2.838 (3)176 (3)
O3W—H3WB···O2vi0.84 (2)1.90 (2)2.741 (2)174 (3)
O2W—H2WB···O1i0.83 (2)1.88 (2)2.702 (2)171 (3)
Symmetry codes: (i) x+2, y+1, z1; (iii) x+1, y+1, z; (iv) x+2, y1/2, z1/2; (v) x+1, y1/2, z1/2; (vi) x1, y, z.

Experimental details

Crystal data
Chemical formula[Mn(C10H8N2)(H2O)4](C9H7O3)2·2H2O
Mr645.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.6620 (12), 11.2726 (13), 11.6238 (13)
β (°) 96.520 (9)
V3)1518.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.21 × 0.14 × 0.07
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.92, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
13208, 3513, 2293
Rint0.060
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.118, 1.04
No. of reflections3513
No. of parameters217
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.31

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H3WA···O2i0.832 (16)1.912 (18)2.738 (2)171 (3)
O1W—H1WA···O1ii0.833 (17)1.888 (17)2.719 (2)174 (3)
O2W—H2WA···O3Wiii0.815 (17)2.024 (17)2.838 (3)176 (3)
O3W—H3WB···O2iv0.842 (16)1.902 (18)2.741 (2)174 (3)
O2W—H2WB···O1v0.832 (16)1.878 (16)2.702 (2)171 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y1/2, z1/2; (iii) x+1, y1/2, z1/2; (iv) x1, y, z; (v) x+2, y+1, z1.
 

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFeng, X., Tang, Z. W., Feng, Y. L., Lan, Y. Z. & Wen, Y. H. (2008). Chin. J. Inorg. Chem. 24, 1713–1717.  CAS Google Scholar
First citationHe, Y. H., Feng, X., Feng, Y. L., Sun, H. & Wen, Y. H. (2007). Chin. J. Inorg. Chem. 23, 1805–1808.  CAS Google Scholar
First citationLi, W. X., Feng, X., Feng, Y. L. & Wen, Y. H. (2008). Chin. J. Struct. Chem. 27, 701–706.  Google Scholar
First citationNiu, C. Y., Wu, B. L., Zheng, X. F., Zhang, H. Y., Hou, H. W., Niu, Y. Y. & Li, Z. J. (2008). Cryst. Growth Des. 8, 1566–1574.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXue, D. X., Lin, Y. Y., Cheng, X. N. & Cheng, X. M. (2007). Cryst. Growth Des. 7, 1332–1336.  Web of Science CSD CrossRef CAS Google Scholar
First citationYe, B. H., Tong, M. L. & Chen, X. M. (2005). Coord. Chem. Rev. 249, 545–565.  Web of Science CrossRef CAS Google Scholar
First citationZhang, L., Li, Z. J., Lin, Q. P., Qin, Y. Y., Zhang, J., Yin, P. X., Cheng, J. K. & Yao, Y. G. (2009). Inorg. Chem. 48, 6517–6525.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds