organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Butane-1,2,3,4-tetra­carboxylic acid–4,4′-bi­pyridine (1/2)

aDepartment of Chemistry, College of Science, Shanghai University, Shanghai 200444, People's Republic of China, and bInstrumental Analysis and Research Center, Shanghai University, Shanghai 200444, People's Republic of China
*Correspondence e-mail: mx_li@mail.shu.edu.cn

(Received 17 July 2009; accepted 23 July 2009; online 29 July 2009)

The hydro­thermal reaction of butane-1,2,3,4-tetra­carboxylic acid (H4butca), 4,4′-bipyridine (bipy) and Mn(SO4)2·H2O afforded a new co-crystal, C8H10O8·2C10H8N2 or H4butca·2(bipy), in which strong O—H⋯N hydrogen-bonding and weak ππ stacking [centroid–centroid distance = 3.8459 (19) Å] inter­actions assemble the organic mol­ecules into a three-dimensional supra­molecular framework. C—H⋯O inter­actions are also present. The whole mol­ecule has inversion symmetry.

Related literature

For the importance of hydrogen-bonding and π-π stacking inter­actions in supra­molecular chemistry, crystal engineering and biological recognition, see: Wang et al. (2007[Wang, Y., Ding, B., Cheng, P., Liao, D. Z. & Yan, S. P. (2007). Inorg. Chem. 46, 2002-2010.]). Many organic co-crystals have been assembled from N-heterocycles and polycarboxylic acids, see: Li et al. (2007[Li, W., Shao, M., Liu, H.-J. & Li, M.-X. (2007). Acta Cryst. E63, o3224.]). For the 1:1 co-crystal H4butca·bipy, see: Najafpour et al. (2008[Najafpour, M. M., Hołyńska, M. & Lis, T. (2008). Acta Cryst. E64, o985.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10O8·2C10H8N2

  • Mr = 546.53

  • Triclinic, [P \overline 1]

  • a = 7.4435 (11) Å

  • b = 8.6990 (13) Å

  • c = 11.438 (2) Å

  • α = 99.819 (3)°

  • β = 105.662 (3)°

  • γ = 111.361 (2)°

  • V = 633.57 (17) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.30 × 0.30 × 0.30 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.969, Tmax = 0.969

  • 3287 measured reflections

  • 2196 independent reflections

  • 1721 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.176

  • S = 1.07

  • 2196 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O4 0.93 2.56 3.476 (3) 168
C9—H9⋯O2 0.93 2.51 3.425 (4) 167
O3—H3A⋯N1i 0.82 1.78 2.595 (3) 170
O2—H2⋯N2ii 0.82 1.84 2.642 (3) 167
Symmetry codes: (i) x+1, y+1, z; (ii) x-1, y-1, z-1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organic cocrystals involving hydrogen-bonding (Table 1, Fig. 2) and π-π stacking [between the (N1/C5–C9) pyridine rings of 4,4'-bipyridine group, centroid-to-centroid distance = 3.8459 (19) Å] interactions are important in the areas of supramolecular chemistry, crystal engineering, and biological recognition (Wang et al., 2007). Many organic cocrystals have been assembled from N-heterocycle and polycarboxylic acids (Li et al., 2007). 4,4'-Bipyridine (bipy) and butane-1,2,3,4-tetracarboxylic acid (H4butca) are important organic ligands in preparing metal complexes.

In our course of preparing ternary complexes containing butane-1,2,3,4-tetracarboxylic acid and 4,4'-bipyridine, a new 1:2 cocrystal compound of H4butca.2bipy was prepared unexpectedly. Previously, a 1:1cocrystal of H4butca.bipy has been synthesized by solution reaction (Najafpour, et al., 2008). Herein we report the supramolecular framework of the title compound (I) (Fig. 1). The whole molecule has an inversion symmetry which lies on the midpoint of the C3—C3Aa bond of the butane-1,2,3,4-tetracarboxylic acid moiety.

Related literature top

For the importance of hydrogen-bonding and π-π stacking interactions in supramolecular chemistry, crystal engineering and biological recognition, see: Wang et al. (2007). Many organic co-crystals have been assembled from N-heterocycles and polycarboxylic acids, see: Li et al. (2007). For the 1:1 co-crystal H4butca.bipy, see: Najafpour et al. (2008).

Experimental top

A mixture of H4butca (0.0468 g, 0.2 mmol), 4,4'-bipyridine (0.0468 g, 0.30 mmol), Mn(SO4)2.H2O (0.0510 g, 0.3 mmol) and H2O (10 ml) was sealed in a 15 ml Teflon-lined stainless-steel reactor, which was heated at 413 K for 72 h. The reaction mixture was cooled to room temperature at a rate of 10 K h-1. Light yellow block crystals suitable for X-ray diffraction were obtained in 56% yield (0.0273 g, based on H4butca). Analysis calculated for C28H26N4O8 (%): C 61.53, H 4.795, N 10.25. Found: C 61.16, H 4.622, N 10.23. IR (KBr pellet, cm-1): 3093w, 3040w, 2921w, 1711 s, 1601 s, 1539m, 1498m, 1414 s,1396 s, 1365m, 1285 s, 1217 s, 1128 s, 1071 s, 1005 s, 882m, 816 s, 626 s, 534m.

Refinement top

All H atoms were located geometrically, with C—H distances of 0.93 - 0.98 Å, O—H distances of 0.82 Å, and allowed to ride on their respective parent atoms with the constraint Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I), showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing diagram of compound (I)
Butane-1,2,3,4-tetracarboxylic acid–4,4'-bipyridine (1/2) top
Crystal data top
C8H10O8·2C10H8N2Z = 1
Mr = 546.53F(000) = 286
Triclinic, P1Dx = 1.432 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4435 (11) ÅCell parameters from 1387 reflections
b = 8.6990 (13) Åθ = 2.6–26.6°
c = 11.438 (2) ŵ = 0.11 mm1
α = 99.819 (3)°T = 296 K
β = 105.662 (3)°Block, colourless
γ = 111.361 (2)°0.30 × 0.30 × 0.30 mm
V = 633.57 (17) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2196 independent reflections
Radiation source: fine-focus sealed tube1721 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ϕ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.969, Tmax = 0.969k = 910
3287 measured reflectionsl = 139
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0797P)2 + 0.4629P]
where P = (Fo2 + 2Fc2)/3
2196 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C8H10O8·2C10H8N2γ = 111.361 (2)°
Mr = 546.53V = 633.57 (17) Å3
Triclinic, P1Z = 1
a = 7.4435 (11) ÅMo Kα radiation
b = 8.6990 (13) ŵ = 0.11 mm1
c = 11.438 (2) ÅT = 296 K
α = 99.819 (3)°0.30 × 0.30 × 0.30 mm
β = 105.662 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2196 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1721 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.969Rint = 0.013
3287 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 1.07Δρmax = 0.78 e Å3
2196 reflectionsΔρmin = 0.30 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1342 (5)0.6302 (4)0.0696 (3)0.0508 (7)
C20.0232 (5)0.7892 (4)0.0456 (3)0.0597 (9)
H2A0.12120.79390.08580.072*
H2B0.08440.77420.10580.072*
C30.0728 (5)0.9587 (3)0.0242 (3)0.0548 (8)
H30.13160.94000.04100.066*
C40.2542 (5)1.0895 (4)0.1447 (3)0.0498 (7)
C50.2914 (4)0.4885 (4)0.4266 (3)0.0479 (7)
H50.39170.41110.44850.057*
C60.1373 (4)0.6347 (4)0.5207 (3)0.0449 (7)
H60.13460.65480.60380.054*
C70.0146 (4)0.7522 (3)0.4900 (2)0.0368 (6)
C80.0007 (4)0.7138 (4)0.3640 (3)0.0490 (7)
H80.09630.78880.33870.059*
C90.1600 (5)0.5644 (4)0.2767 (3)0.0543 (8)
H90.16710.54080.19280.065*
C100.1856 (4)0.9112 (3)0.5876 (2)0.0373 (6)
C110.2302 (4)0.9316 (4)0.7163 (3)0.0467 (7)
H110.15310.84420.74360.056*
C120.3888 (4)1.0814 (4)0.8037 (3)0.0515 (7)
H120.41601.09200.88970.062*
C130.4643 (4)1.1920 (4)0.6489 (3)0.0500 (7)
H130.54551.28150.62490.060*
C140.3093 (4)1.0477 (4)0.5543 (3)0.0452 (7)
H140.28691.04090.46920.054*
N10.3041 (4)0.4522 (3)0.3059 (2)0.0486 (6)
N20.5053 (3)1.2116 (3)0.7720 (2)0.0480 (6)
O10.1175 (4)0.6219 (3)0.1724 (2)0.0646 (6)
O20.2488 (4)0.5023 (3)0.0413 (2)0.0675 (7)
H20.31150.41680.10430.101*
O30.4001 (3)1.1949 (3)0.11635 (17)0.0535 (6)
H3A0.48951.26950.18160.080*
O40.2601 (3)1.0897 (3)0.25184 (19)0.0617 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0491 (16)0.0413 (16)0.0448 (17)0.0165 (13)0.0013 (13)0.0039 (13)
C20.0589 (19)0.0442 (17)0.0560 (19)0.0128 (15)0.0062 (15)0.0121 (14)
C30.0543 (17)0.0355 (15)0.0479 (17)0.0079 (13)0.0013 (14)0.0065 (12)
C40.0508 (17)0.0385 (15)0.0391 (16)0.0143 (13)0.0039 (13)0.0051 (12)
C50.0422 (15)0.0415 (15)0.0449 (16)0.0070 (13)0.0106 (12)0.0105 (12)
C60.0477 (15)0.0451 (15)0.0353 (14)0.0143 (13)0.0142 (12)0.0103 (12)
C70.0358 (13)0.0365 (13)0.0354 (13)0.0156 (11)0.0095 (11)0.0098 (11)
C80.0465 (16)0.0501 (16)0.0375 (15)0.0092 (13)0.0148 (12)0.0096 (12)
C90.0551 (17)0.0537 (17)0.0353 (15)0.0106 (14)0.0126 (13)0.0038 (13)
C100.0348 (13)0.0363 (13)0.0370 (14)0.0146 (11)0.0102 (11)0.0079 (11)
C110.0471 (15)0.0432 (15)0.0377 (14)0.0086 (13)0.0138 (12)0.0100 (12)
C120.0498 (16)0.0526 (17)0.0360 (15)0.0120 (14)0.0100 (13)0.0068 (13)
C130.0447 (16)0.0410 (15)0.0536 (17)0.0087 (13)0.0148 (13)0.0159 (13)
C140.0453 (15)0.0460 (15)0.0395 (15)0.0142 (13)0.0145 (12)0.0150 (12)
N10.0450 (13)0.0419 (13)0.0417 (14)0.0105 (11)0.0060 (10)0.0056 (10)
N20.0398 (12)0.0424 (13)0.0469 (14)0.0088 (10)0.0098 (10)0.0079 (10)
O10.0678 (15)0.0481 (13)0.0711 (16)0.0150 (11)0.0286 (12)0.0185 (11)
O20.0788 (16)0.0500 (13)0.0436 (12)0.0084 (12)0.0114 (11)0.0034 (10)
O30.0456 (11)0.0456 (12)0.0373 (11)0.0028 (9)0.0005 (9)0.0005 (9)
O40.0599 (13)0.0513 (13)0.0424 (12)0.0047 (10)0.0019 (10)0.0097 (9)
Geometric parameters (Å, º) top
C1—O11.209 (4)C7—C101.484 (4)
C1—O21.285 (4)C8—C91.374 (4)
C1—C21.513 (4)C8—H80.9300
C2—C31.482 (4)C9—N11.325 (4)
C2—H2A0.9700C9—H90.9300
C2—H2B0.9700C10—C111.383 (4)
C3—C41.536 (4)C10—C141.395 (4)
C3—C3i1.542 (6)C11—C121.374 (4)
C3—H30.9800C11—H110.9300
C4—O41.214 (3)C12—N21.327 (4)
C4—O31.301 (4)C12—H120.9300
C5—N11.332 (4)C13—N21.324 (4)
C5—C61.377 (4)C13—C141.373 (4)
C5—H50.9300C13—H130.9300
C6—C71.393 (4)C14—H140.9300
C6—H60.9300O2—H20.8200
C7—C81.386 (4)O3—H3A0.8200
O1—C1—O2124.5 (3)C6—C7—C10121.7 (2)
O1—C1—C2126.0 (3)C9—C8—C7119.6 (3)
O2—C1—C2109.5 (3)C9—C8—H8120.2
C3—C2—C1117.3 (3)C7—C8—H8120.2
C3—C2—H2A108.0N1—C9—C8123.5 (3)
C1—C2—H2A108.0N1—C9—H9118.3
C3—C2—H2B108.0C8—C9—H9118.3
C1—C2—H2B108.0C11—C10—C14116.6 (2)
H2A—C2—H2B107.2C11—C10—C7121.5 (2)
C2—C3—C4110.8 (2)C14—C10—C7121.8 (2)
C2—C3—C3i116.5 (3)C12—C11—C10119.8 (3)
C4—C3—C3i108.9 (3)C12—C11—H11120.1
C2—C3—H3106.7C10—C11—H11120.1
C4—C3—H3106.7N2—C12—C11123.5 (3)
C3i—C3—H3106.7N2—C12—H12118.2
O4—C4—O3125.2 (2)C11—C12—H12118.2
O4—C4—C3123.6 (3)N2—C13—C14124.0 (3)
O3—C4—C3111.2 (3)N2—C13—H13118.0
N1—C5—C6123.4 (3)C14—C13—H13118.0
N1—C5—H5118.3C13—C14—C10119.2 (3)
C6—C5—H5118.3C13—C14—H14120.4
C5—C6—C7119.2 (2)C10—C14—H14120.4
C5—C6—H6120.4C9—N1—C5117.3 (2)
C7—C6—H6120.4C13—N2—C12116.9 (2)
C8—C7—C6117.0 (2)C1—O2—H2109.5
C8—C7—C10121.3 (2)C4—O3—H3A109.5
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O40.932.563.476 (3)168
C9—H9···O20.932.513.425 (4)167
O3—H3A···N1ii0.821.782.595 (3)170
O2—H2···N2iii0.821.842.642 (3)167
Symmetry codes: (ii) x+1, y+1, z; (iii) x1, y1, z1.

Experimental details

Crystal data
Chemical formulaC8H10O8·2C10H8N2
Mr546.53
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.4435 (11), 8.6990 (13), 11.438 (2)
α, β, γ (°)99.819 (3), 105.662 (3), 111.361 (2)
V3)633.57 (17)
Z1
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.969, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
3287, 2196, 1721
Rint0.013
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.176, 1.07
No. of reflections2196
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.30

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O40.932.563.476 (3)168.3
C9—H9···O20.932.513.425 (4)166.8
O3—H3A···N1i0.821.782.595 (3)170.4
O2—H2···N2ii0.821.842.642 (3)167.1
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y1, z1.
 

Acknowledgements

The project was supported by the Leading Academic Discipline Project of Shanghai Municipal Education Commission (J50102), China.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, W., Shao, M., Liu, H.-J. & Li, M.-X. (2007). Acta Cryst. E63, o3224.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNajafpour, M. M., Hołyńska, M. & Lis, T. (2008). Acta Cryst. E64, o985.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Ding, B., Cheng, P., Liao, D. Z. & Yan, S. P. (2007). Inorg. Chem. 46, 2002–2010.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds