metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{(E)-4-chloro-2-[(2-chloro-3-pyrid­yl)imino­methyl-κN]phenolato-κO}copper(II)

aDepartment of Biochemical Engineering, Anhui University of Technology and Science, Wuhu 241000, People's Republic of China, and bSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@mail.lzjtu.cn

(Received 23 July 2009; accepted 24 July 2009; online 31 July 2009)

In the title complex, [Cu(C12H7Cl2N2O)2], the CuII center is tetra­coordinated by two phenolic O and two azomethine N atoms from two bidentate 4-chloro-2-[(2-chloro-3-pyrid­yl)imino­meth­yl]phenolate (L) ligands. In the crystal structure, the CuII atom has a distorted square-planar coordination environment. The dihedral angles between the benzene and pyridyl rings are 54.39 (3) and 80.14 (4)°, indicating that the pyridine ring has a considerably weaker steric hindrance. The packing of the mol­ecule is controlled by C—H⋯π(Ph) inter­actions and short O⋯Cl inter­actions [3.196 (4) Å], linking the mol­ecules into a chain-like structure along the c axis.

Related literature

For background to Schiff bases, see: Soliman & Mohamed (2004[Soliman, A. A. & Mohamed, G. G. (2004). Thermochim. Acta, 421, 151-159.]); Abd El-Wahab et al. (2004[Abd El-Wahab, Z. H., Mashaly, M. M., Salman, A. A., El-Shetary, B. A. & Faheim, A. A. (2004). Spectrochim. Acta Part A, 60, 2861-2873.]). For the synthesis, see: Dong et al. (2009d[Dong, W. K., Zhao, C. Y., Sun, Y. X., Tang, X. L. & He, X. N. (2009d). Inorg. Chem. Commun. 12, 234-236.]). For related structures, see: Dong et al. (2009a[Dong, W.-K., Wu, J.-C., Yao, J., Gong, S.-S. & Tong, J.-F. (2009a). Acta Cryst. E65, m802.],b[Dong, W.-K., Wu, J.-C., Yao, J., Gong, S.-S. & Tong, J.-F. (2009b). Acta Cryst. E65, m803.],c[Dong, W.-K., Tong, J.-F., An, L.-L., Wu, J.-C. & Yao, J. (2009c). Acta Cryst. E65, m945.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C12H7Cl2N2O)2]

  • Mr = 595.73

  • Monoclinic, P 21 /c

  • a = 20.236 (2) Å

  • b = 11.4821 (14) Å

  • c = 10.5458 (9) Å

  • β = 90.132 (2)°

  • V = 2450.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.36 mm−1

  • T = 298 K

  • 0.40 × 0.14 × 0.09 mm

Data collection
  • Buker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.613, Tmax = 0.888

  • 12294 measured reflections

  • 4320 independent reflections

  • 2614 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.065

  • S = 1.02

  • 4320 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22⋯Cg1i 0.93 2.89 3.753 (3) 155
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]. Cg1 is the centroid of the C2–C7 ring.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are a versatile class of ligands in the field of modern coordination chemistry (Soliman & Mohamed, 2004), which can coordinate to transition or rare earth ions yielding complexes with interesting properties that are useful in materials science and in biological systems (Abd El-Wahab et al., 2004). As an extension of our work on the complexes between transition metals and Schiff base ligands (Dong et al., 2009a; Dong et al., 2009b), we report here the synthesis and crystal structures of the title complex, bis{(E)-[4-chloro-2-((2-chloropyridin-3-ylimino)methyl-κN)] phenolato-κO1}copper(II) (Fig. 1).

In asymmetric molecule unit of the title complex, the CuII center is tetracoordinated by two phenolic O and two azomethine N atoms from two ligand (L-) units and has a distorted square-planar coordination environment, which is similar to the reported copper complex with (E)-[4-bromo-2-((2-chloropyridin-3-ylimino)methyl)]phenol (Dong et al., 2009c). The interplane dihedral angles are found to be as follows: 54.39 (3)° between the benzene ring (C2—C7) and pyridyl ring (N2/C8—C12), 80.14 (4)° between benzene ring (C14—C19) and pyridyl ring (N4/C20—C24), indicating the pyridine ring having a considerable weaker steric hindrance. Besides, the dihedral angle between the coordination plane of O1—Cu1—N1 and O2—Cu1—N3 is 27.96 (3)°, indicating slight distortion toward tetrahedral geometry from the square planar structure. The packing of the molecule is controlled by C—H···π(Ph) interactions and short O···Cl interactions linking molecules into infinite one-dimensional supramolecular structure along c axis (Fig. 2).

Related literature top

For background to Schiff bases, see: Soliman & Mohamed (2004); Abd El-Wahab et al. (2004). For the synthesis, see: Dong et al. (2009d). For related structures, see: Dong et al. (2009a,b,c).

Experimental top

(E)-[4-Chloro-2-((2-chloropyridin-3-ylimino)methyl)]phenol (HL) was prepared according to previously reported procedure (Dong et al., 2009d). A blue solution of copper(II) acetate monohydrate (4.2 mg, 0.021 mmol) in ethanol (2 ml) was added dropwise to a pale-yellow solution of HL (11.2 mg, 0.042 mmol) in ethanol (4 ml) at room temperature. The colour of the mixing solution turned to brown immediately, then allowed to stand at room temperature for several days. With evaporation of the solvent, brown needle-like single crystals suitable for X-ray crystallographic analysis were obtained. IR: ν C=N, 1610 cm-1, ν Ar—O, 1236 cm-1, ν Cu—N, 459 cm-1 and ν Cu—O, 426 cm-1.

Refinement top

H atoms were treated as riding atoms with distances C—H = 0.93 Å (CH), and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with atom numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. The infinite one-dimensional supramolecular structure along c axis linked by C—H···π(Ph) interactions and short O···Cl interactions (dashed lines).
Bis{(E)-4-chloro-2-[(2-chloro-3-pyridyl)iminomethyl- κN]phenolato-κO}copper(II) top
Crystal data top
[Cu(C12H7Cl2N2O)2]F(000) = 1196
Mr = 595.73Dx = 1.615 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2435 reflections
a = 20.236 (2) Åθ = 26.2–25.3°
b = 11.4821 (14) ŵ = 1.36 mm1
c = 10.5458 (9) ÅT = 298 K
β = 90.132 (2)°Needle-like, brown
V = 2450.3 (4) Å30.40 × 0.14 × 0.09 mm
Z = 4
Data collection top
Buker SMART 1000 CCD area-detector
diffractometer
4320 independent reflections
Radiation source: fine-focus sealed tube2614 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2419
Tmin = 0.613, Tmax = 0.888k = 1313
12294 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0103P)2]
where P = (Fo2 + 2Fc2)/3
4320 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Cu(C12H7Cl2N2O)2]V = 2450.3 (4) Å3
Mr = 595.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.236 (2) ŵ = 1.36 mm1
b = 11.4821 (14) ÅT = 298 K
c = 10.5458 (9) Å0.40 × 0.14 × 0.09 mm
β = 90.132 (2)°
Data collection top
Buker SMART 1000 CCD area-detector
diffractometer
4320 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2614 reflections with I > 2σ(I)
Tmin = 0.613, Tmax = 0.888Rint = 0.058
12294 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.02Δρmax = 0.42 e Å3
4320 reflectionsΔρmin = 0.39 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.75122 (2)0.77649 (3)0.42109 (4)0.04479 (14)
Cl10.85318 (5)0.19528 (7)0.24296 (11)0.0748 (4)
Cl20.69809 (5)0.87831 (8)0.16425 (10)0.0715 (3)
Cl30.63434 (5)1.36121 (8)0.53290 (13)0.0847 (4)
Cl40.87717 (5)0.87627 (9)0.20907 (10)0.0712 (3)
N10.69574 (13)0.6664 (2)0.3246 (3)0.0404 (7)
N20.5723 (2)0.8484 (3)0.1640 (4)0.0824 (12)
N30.81090 (13)0.9095 (2)0.4590 (3)0.0405 (7)
N40.97911 (16)0.8403 (3)0.3522 (3)0.0580 (9)
O10.82307 (10)0.67264 (18)0.4291 (2)0.0496 (7)
O20.67527 (11)0.85984 (17)0.4727 (2)0.0475 (7)
C10.71125 (17)0.5582 (3)0.3021 (3)0.0434 (9)
H10.67950.51160.26340.052*
C20.77345 (17)0.5055 (3)0.3324 (3)0.0402 (9)
C30.82696 (17)0.5658 (3)0.3882 (3)0.0387 (9)
C40.88764 (17)0.5059 (3)0.3980 (3)0.0493 (10)
H40.92340.54340.43550.059*
C50.89566 (19)0.3951 (3)0.3546 (4)0.0515 (10)
H50.93660.35870.36120.062*
C60.8432 (2)0.3370 (3)0.3011 (4)0.0507 (11)
C70.78289 (18)0.3887 (3)0.2908 (3)0.0479 (10)
H70.74760.34740.25640.057*
C80.62746 (19)0.8039 (3)0.2075 (4)0.0560 (11)
C90.63246 (18)0.7033 (3)0.2809 (3)0.0459 (10)
C100.5749 (2)0.6457 (3)0.3112 (4)0.0635 (12)
H100.57570.57910.36140.076*
C110.5154 (2)0.6894 (4)0.2649 (5)0.0825 (15)
H110.47560.65190.28100.099*
C120.5177 (3)0.7896 (5)0.1948 (5)0.0967 (18)
H120.47770.81950.16610.116*
C130.79004 (17)1.0141 (3)0.4799 (3)0.0432 (9)
H130.82211.07110.49220.052*
C140.72224 (17)1.0512 (3)0.4859 (3)0.0398 (9)
C150.66883 (18)0.9718 (3)0.4849 (3)0.0421 (9)
C160.60489 (17)1.0190 (3)0.5003 (3)0.0522 (11)
H160.56880.96890.50070.063*
C170.59427 (18)1.1356 (3)0.5146 (4)0.0575 (11)
H170.55151.16390.52450.069*
C180.64736 (19)1.2118 (3)0.5142 (4)0.0531 (11)
C190.71064 (18)1.1714 (3)0.5010 (3)0.0489 (10)
H190.74591.22330.50210.059*
C200.91648 (19)0.8681 (3)0.3548 (4)0.0453 (10)
C210.88043 (17)0.8917 (3)0.4636 (4)0.0403 (9)
C220.91409 (18)0.8877 (3)0.5758 (4)0.0525 (10)
H220.89230.90290.65160.063*
C230.98051 (19)0.8610 (3)0.5768 (4)0.0582 (11)
H231.00440.85940.65220.070*
C241.01031 (19)0.8367 (3)0.4626 (5)0.0594 (12)
H241.05480.81660.46310.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0435 (3)0.0421 (2)0.0487 (3)0.0027 (2)0.0027 (2)0.0051 (3)
Cl10.0885 (8)0.0468 (6)0.0891 (9)0.0160 (6)0.0088 (7)0.0087 (6)
Cl20.0949 (9)0.0575 (6)0.0622 (8)0.0006 (6)0.0049 (6)0.0104 (6)
Cl30.0771 (8)0.0416 (5)0.1354 (12)0.0083 (5)0.0144 (8)0.0066 (7)
Cl40.0742 (8)0.0955 (7)0.0439 (7)0.0157 (6)0.0002 (6)0.0041 (6)
N10.0402 (19)0.0404 (17)0.041 (2)0.0038 (14)0.0034 (15)0.0013 (15)
N20.077 (3)0.082 (3)0.088 (3)0.029 (2)0.037 (3)0.017 (2)
N30.0379 (19)0.0411 (16)0.042 (2)0.0045 (14)0.0024 (15)0.0052 (15)
N40.047 (2)0.067 (2)0.060 (3)0.0051 (18)0.0065 (19)0.003 (2)
O10.0427 (15)0.0416 (13)0.0644 (19)0.0052 (12)0.0101 (13)0.0088 (13)
O20.0440 (15)0.0368 (13)0.0616 (19)0.0004 (12)0.0039 (13)0.0083 (13)
C10.042 (2)0.047 (2)0.041 (3)0.0048 (19)0.0006 (19)0.0013 (19)
C20.042 (2)0.040 (2)0.038 (2)0.0023 (18)0.0029 (19)0.0009 (19)
C30.038 (2)0.044 (2)0.035 (2)0.0022 (18)0.0044 (18)0.0038 (19)
C40.041 (2)0.056 (2)0.051 (3)0.006 (2)0.0053 (19)0.002 (2)
C50.052 (3)0.050 (2)0.052 (3)0.017 (2)0.006 (2)0.007 (2)
C60.062 (3)0.040 (2)0.050 (3)0.014 (2)0.008 (2)0.000 (2)
C70.058 (3)0.045 (2)0.041 (3)0.000 (2)0.002 (2)0.0018 (19)
C80.058 (3)0.057 (3)0.053 (3)0.021 (2)0.010 (2)0.012 (2)
C90.044 (3)0.052 (2)0.042 (3)0.010 (2)0.006 (2)0.011 (2)
C100.047 (3)0.074 (3)0.069 (3)0.004 (2)0.003 (2)0.018 (2)
C110.047 (3)0.107 (4)0.094 (4)0.001 (3)0.004 (3)0.031 (3)
C120.060 (4)0.120 (5)0.109 (5)0.040 (4)0.035 (3)0.038 (4)
C130.044 (2)0.045 (2)0.041 (3)0.0035 (19)0.0015 (19)0.0000 (19)
C140.038 (2)0.041 (2)0.040 (2)0.0049 (18)0.0003 (18)0.0015 (18)
C150.040 (2)0.048 (2)0.038 (2)0.0036 (19)0.0011 (18)0.0047 (19)
C160.041 (2)0.048 (2)0.067 (3)0.0001 (19)0.002 (2)0.001 (2)
C170.046 (3)0.053 (2)0.074 (3)0.006 (2)0.001 (2)0.004 (2)
C180.050 (3)0.035 (2)0.074 (3)0.008 (2)0.003 (2)0.006 (2)
C190.049 (2)0.042 (2)0.056 (3)0.0046 (19)0.001 (2)0.003 (2)
C200.050 (3)0.043 (2)0.043 (3)0.0017 (19)0.001 (2)0.0012 (19)
C210.042 (2)0.036 (2)0.043 (3)0.0001 (18)0.001 (2)0.0007 (19)
C220.053 (3)0.056 (2)0.048 (3)0.000 (2)0.002 (2)0.000 (2)
C230.050 (3)0.061 (2)0.063 (3)0.003 (2)0.014 (2)0.007 (2)
C240.044 (3)0.057 (3)0.077 (4)0.002 (2)0.004 (3)0.005 (3)
Geometric parameters (Å, º) top
Cu1—O11.882 (2)C6—C71.361 (4)
Cu1—O21.892 (2)C7—H70.9300
Cu1—N11.972 (3)C8—C91.394 (5)
Cu1—N31.987 (3)C9—C101.379 (4)
Cl1—C61.751 (3)C10—C111.391 (5)
Cl2—C81.727 (4)C10—H100.9300
Cl3—C181.747 (3)C11—C121.368 (6)
Cl4—C201.731 (4)C11—H110.9300
N1—C11.303 (3)C12—H120.9300
N1—C91.424 (4)C13—C141.438 (4)
N2—C81.309 (4)C13—H130.9300
N2—C121.336 (5)C14—C191.409 (4)
N3—C131.292 (3)C14—C151.414 (4)
N3—C211.422 (4)C15—C161.413 (4)
N4—C201.307 (4)C16—C171.365 (4)
N4—C241.324 (5)C16—H160.9300
O1—C31.303 (3)C17—C181.385 (4)
O2—C151.298 (3)C17—H170.9300
C1—C21.432 (4)C18—C191.369 (4)
C1—H10.9300C19—H190.9300
C2—C31.413 (4)C20—C211.388 (4)
C2—C71.423 (4)C21—C221.365 (5)
C3—C41.411 (4)C22—C231.379 (4)
C4—C51.362 (4)C22—H220.9300
C4—H40.9300C23—C241.376 (5)
C5—C61.374 (5)C23—H230.9300
C5—H50.9300C24—H240.9300
O1—Cu1—O2159.31 (10)C9—C10—H10120.8
O1—Cu1—N193.20 (11)C11—C10—H10120.8
O2—Cu1—N190.63 (10)C12—C11—C10117.6 (5)
O1—Cu1—N390.50 (10)C12—C11—H11121.2
O2—Cu1—N392.70 (10)C10—C11—H11121.2
N1—Cu1—N3160.32 (11)N2—C12—C11125.8 (5)
C1—N1—C9116.2 (3)N2—C12—H12117.1
C1—N1—Cu1124.6 (3)C11—C12—H12117.1
C9—N1—Cu1119.1 (2)N3—C13—C14126.5 (3)
C8—N2—C12115.0 (4)N3—C13—H13116.7
C13—N3—C21116.8 (3)C14—C13—H13116.7
C13—N3—Cu1123.4 (2)C19—C14—C15120.3 (3)
C21—N3—Cu1119.8 (2)C19—C14—C13117.0 (3)
C20—N4—C24116.7 (3)C15—C14—C13122.5 (3)
C3—O1—Cu1129.0 (2)O2—C15—C16118.9 (3)
C15—O2—Cu1127.7 (2)O2—C15—C14124.2 (3)
N1—C1—C2125.1 (3)C16—C15—C14116.9 (3)
N1—C1—H1117.5C17—C16—C15122.3 (3)
C2—C1—H1117.5C17—C16—H16118.9
C3—C2—C7119.1 (3)C15—C16—H16118.9
C3—C2—C1123.9 (3)C16—C17—C18119.8 (3)
C7—C2—C1116.6 (3)C16—C17—H17120.1
O1—C3—C4119.2 (3)C18—C17—H17120.1
O1—C3—C2123.6 (3)C19—C18—C17120.8 (3)
C4—C3—C2117.3 (3)C19—C18—Cl3119.0 (3)
C5—C4—C3122.3 (4)C17—C18—Cl3120.2 (3)
C5—C4—H4118.8C18—C19—C14119.9 (3)
C3—C4—H4118.8C18—C19—H19120.0
C4—C5—C6119.9 (3)C14—C19—H19120.0
C4—C5—H5120.0N4—C20—C21125.2 (4)
C6—C5—H5120.0N4—C20—Cl4116.0 (3)
C7—C6—C5120.9 (3)C21—C20—Cl4118.8 (3)
C7—C6—Cl1118.8 (3)C22—C21—C20116.6 (3)
C5—C6—Cl1120.3 (3)C22—C21—N3121.7 (3)
C6—C7—C2120.5 (3)C20—C21—N3121.4 (4)
C6—C7—H7119.8C21—C22—C23119.9 (4)
C2—C7—H7119.8C21—C22—H22120.1
N2—C8—C9125.4 (4)C23—C22—H22120.1
N2—C8—Cl2114.8 (4)C24—C23—C22117.9 (4)
C9—C8—Cl2119.8 (3)C24—C23—H23121.0
C10—C9—C8117.8 (4)C22—C23—H23121.0
C10—C9—N1122.8 (4)N4—C24—C23123.6 (4)
C8—C9—N1119.4 (3)N4—C24—H24118.2
C9—C10—C11118.4 (4)C23—C24—H24118.2
O1—Cu1—N1—C18.0 (3)C1—N1—C9—C1053.3 (5)
O2—Cu1—N1—C1151.7 (3)Cu1—N1—C9—C10123.5 (3)
N3—Cu1—N1—C1108.5 (4)C1—N1—C9—C8128.7 (3)
O1—Cu1—N1—C9175.6 (3)Cu1—N1—C9—C854.5 (4)
O2—Cu1—N1—C924.8 (3)C8—C9—C10—C111.3 (5)
N3—Cu1—N1—C975.0 (4)N1—C9—C10—C11179.3 (3)
O1—Cu1—N3—C13173.1 (3)C9—C10—C11—C121.9 (6)
O2—Cu1—N3—C1313.5 (3)C8—N2—C12—C110.6 (7)
N1—Cu1—N3—C1385.9 (4)C10—C11—C12—N21.7 (8)
O1—Cu1—N3—C217.2 (3)C21—N3—C13—C14176.9 (3)
O2—Cu1—N3—C21166.8 (3)Cu1—N3—C13—C143.4 (5)
N1—Cu1—N3—C2193.7 (4)N3—C13—C14—C19175.7 (4)
O2—Cu1—O1—C396.9 (4)N3—C13—C14—C158.2 (6)
N1—Cu1—O1—C33.4 (3)Cu1—O2—C15—C16167.6 (2)
N3—Cu1—O1—C3164.1 (3)Cu1—O2—C15—C1413.5 (5)
O1—Cu1—O2—C15117.5 (3)C19—C14—C15—O2179.2 (3)
N1—Cu1—O2—C15141.7 (3)C13—C14—C15—O23.3 (6)
N3—Cu1—O2—C1518.9 (3)C19—C14—C15—C160.3 (5)
C9—N1—C1—C2176.8 (3)C13—C14—C15—C16175.6 (3)
Cu1—N1—C1—C26.7 (5)O2—C15—C16—C17179.5 (3)
N1—C1—C2—C31.7 (5)C14—C15—C16—C170.5 (6)
N1—C1—C2—C7175.0 (3)C15—C16—C17—C180.0 (6)
Cu1—O1—C3—C4176.4 (2)C16—C17—C18—C190.7 (6)
Cu1—O1—C3—C22.9 (5)C16—C17—C18—Cl3179.8 (3)
C7—C2—C3—O1180.0 (3)C17—C18—C19—C140.9 (6)
C1—C2—C3—O16.9 (5)Cl3—C18—C19—C14180.0 (3)
C7—C2—C3—C40.8 (5)C15—C14—C19—C180.3 (6)
C1—C2—C3—C4172.4 (3)C13—C14—C19—C18176.5 (3)
O1—C3—C4—C5178.5 (3)C24—N4—C20—C211.3 (5)
C2—C3—C4—C50.8 (5)C24—N4—C20—Cl4178.3 (3)
C3—C4—C5—C61.2 (6)N4—C20—C21—C221.5 (5)
C4—C5—C6—C70.1 (6)Cl4—C20—C21—C22178.0 (3)
C4—C5—C6—Cl1179.1 (3)N4—C20—C21—N3173.4 (3)
C5—C6—C7—C21.7 (5)Cl4—C20—C21—N37.1 (4)
Cl1—C6—C7—C2177.5 (3)C13—N3—C21—C2275.5 (4)
C3—C2—C7—C62.0 (5)Cu1—N3—C21—C22104.8 (3)
C1—C2—C7—C6171.6 (3)C13—N3—C21—C20109.9 (4)
C12—N2—C8—C90.1 (6)Cu1—N3—C21—C2069.8 (4)
C12—N2—C8—Cl2178.5 (3)C20—C21—C22—C230.1 (5)
N2—C8—C9—C100.3 (6)N3—C21—C22—C23174.8 (3)
Cl2—C8—C9—C10178.9 (3)C21—C22—C23—C241.3 (5)
N2—C8—C9—N1178.4 (3)C20—N4—C24—C230.4 (6)
Cl2—C8—C9—N13.0 (4)C22—C23—C24—N41.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···Cg1i0.932.893.753 (3)155
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C12H7Cl2N2O)2]
Mr595.73
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)20.236 (2), 11.4821 (14), 10.5458 (9)
β (°) 90.132 (2)
V3)2450.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.36
Crystal size (mm)0.40 × 0.14 × 0.09
Data collection
DiffractometerBuker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.613, 0.888
No. of measured, independent and
observed [I > 2σ(I)] reflections
12294, 4320, 2614
Rint0.058
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.065, 1.02
No. of reflections4320
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.39

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···Cg1i0.932.8893.753 (3)154.93
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by the Foundation of the Education Department of Gansu Province (No. 0904-11) and the `Jing Lan' Talent Engineering Funds of Lanzhou Jiaotong University, which are gratefully acknowledged.

References

First citationAbd El-Wahab, Z. H., Mashaly, M. M., Salman, A. A., El-Shetary, B. A. & Faheim, A. A. (2004). Spectrochim. Acta Part A, 60, 2861–2873.  Google Scholar
First citationDong, W.-K., Tong, J.-F., An, L.-L., Wu, J.-C. & Yao, J. (2009c). Acta Cryst. E65, m945.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W.-K., Wu, J.-C., Yao, J., Gong, S.-S. & Tong, J.-F. (2009a). Acta Cryst. E65, m802.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W.-K., Wu, J.-C., Yao, J., Gong, S.-S. & Tong, J.-F. (2009b). Acta Cryst. E65, m803.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W. K., Zhao, C. Y., Sun, Y. X., Tang, X. L. & He, X. N. (2009d). Inorg. Chem. Commun. 12, 234–236.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSoliman, A. A. & Mohamed, G. G. (2004). Thermochim. Acta, 421, 151–159.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds