organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1731-o1732

(3aR,8aS,9S,9aR)-9-Hy­droxy­perhydro­furo[3,2-f]indolizin-6-one

aInstitute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic 81237, bInstitute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic 81237, and cInstitute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, Bratislava, Slovak Republic 81237
*Correspondence e-mail: viktor.vrabel@stuba.sk

(Received 27 May 2009; accepted 24 June 2009; online 1 July 2009)

In the title compound, C10H15NO3, the central six-membered ring of the indolizine system adopts a chair conformation, while the oxopyrrolidine and hydro­furan rings attached to the indolizine ring system have envelope conformations. In the crystal, the mol­ecules form chains parallel to the b axis via inter­molecular O—H⋯O hydrogen bonds. The absolute configuration was assigned from the synthesis.

Related literature

For general properties of indolizines see: Gundersen et al. (2007[Gundersen, L.-L., Charnock, C., Negussie, A. H., Rise, F. & Teklu, S. (2007). Eur. J. Pharm. Sci. 30, 26-35.]); Sundaram et al. (2007[Sundaram, G. S. M., Singh, B., Venkatesh, C., Ila, H. & Junjappa, H. (2007). J. Org. Chem. 72, 5020-5023.]); Mikael (1999[Mikael, J. P. (1999). Nat. Prod. Rep. 16, 675-709.]); Pyne (2005[Pyne, S. G. (2005). Curr. Org. Synth. 2, 39-57.]); Karanjule et al. (2006[Karanjule, N. S., Markad, S. D., Shinde, V. S. & Dhavale, D. D. (2006). J. Org. Chem. 71, 4667-4670.]); Chaudhari et al. (2006[Chaudhari, V. D., Ajish Kumar, K. S. & Dhavale, D. D. (2006). Tetrahedron, 62, 4354-4359.]); Martin et al. (2005[Martin, R., Murruzzu, C., Pericas, M. A. & Riera, A. (2005). J. Org. Chem. 70, 2325-2328.]). For the synthesis of the title compound see: Šafář et al. (2008[Šafář, P., Žúžiová, J., Bobošíková, M., Marchalín, Š., Prónayová, N., Dalla, V. & Daich, A. (2008). Tetrahedron Asymmetry, 19, 467-475.]). For related structures, see: Vrábel et al. (2004[Vrábel, V., Kožíšek, J., Langer, V., Marchalín, Š. & Szemes, F. (2004). Acta Cryst. E60, o2211-o2213.]); Švorc et al. (2009[Švorc, Ľ., Vrábel, V., Žúžiová, J., Bobošíková, M. & Kožíšek, J. (2009). Acta Cryst. E65, o895-o896.]). Camus et al. (2003[Camus, F., Norberg, B., Bourry, A., Akué-Gédu, R., Rigo, B. & Durant, F. (2003). Acta Cryst. E59, o1002-o1003.]) For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1362.]).

[Scheme 1]

Experimental

Crystal data
  • C10H15NO3

  • Mr = 197.23

  • Monoclinic, P 21

  • a = 6.2856 (1) Å

  • b = 6.4521 (1) Å

  • c = 11.7698 (2) Å

  • β = 98.631 (2)°

  • V = 471.92 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.45 × 0.29 × 0.04 mm

Data collection
  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: analytical (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]) Tmin = 0.962, Tmax = 0.996

  • 12197 measured reflections

  • 1359 independent reflections

  • 1151 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.088

  • S = 1.09

  • 1359 reflections

  • 131 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3i 0.82 (3) 2.15 (3) 2.9233 (19) 157 (2)
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+2].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Indolizines are electron-rich heterocycles with very low oxidation potential. Functionalized indolizines are common substructures found in biologically important natural products and synthetic pharmaceuticals. Due to the various biological functions associated with this skeleton, it has been frequently employed as a key scaffold in the drug industry (Gundersen et al., 2007). The indolizine derivatives show antibacterial, antiviral, antiherpes, anticancer, antifungal, antihelmintic and insecticidal activity (Sundaram et al., 2007). Indolizine alkaloids are excellent inhibitors of biologically important pathways. These include the binding and processing of glycoproteins, potent glycosidase inhibitory activities (Pyne, 2005), activity against AIDS virus HIV and some carcinogenic cells (Mikael, 1999). Castanospermine (Karanjule et al., 2006), swainsonine (Martin et al., 2005) and lentiginosine (Chaudhari et al., 2006) have shown respective glycosidase and mannosidase inhibitory activities, respectively. While an impressive number of total syntheses of polyhydroxylated indolizines and their non-natural analogues in chiral or racemic forms have been reported, the monohydroxylated indolizines have attracted far less attention.

Based on these facts and in contitutation of our interest in developing simple and efficient route for the synthesis of novel monohydroxylated indolizine derivatives, we report here the synthesis, molecular and crystal structure of the title compound, (I). The absolute configuration was established by synthesis and is depicted in the scheme and figure. The expected stereochemistry of atoms C5, C6, C7 and C10 was confirmed as S, S, R and R, respectively (Fig. 1). The central six-membered ring is not planar and adopts a chair conformation (Cremer & Pople, 1975). A calculation of least-squares planes shows that this ring is puckered in such a manner that the four atoms C5, C6, C10 and C11 are coplanar to within 0.019 (2) Å, while atoms N1 and C7 are displaced from this plane on opposite sides, with out-of-plane displacements of -0.591 (2) and 0.565 (1) Å, respectively. The oxopyrrolidine and hydrofuran rings are each distorted towards an envelope conformation, with atoms C4 and C10 as the flaps. The displacements of atoms C4 and C10 from the mean planes of the remaining four atoms are 0.316 (2) and 0.642 (2) Å, respectively. The central six-membered N-ring is approximately perpendicular to the hydrofuran ring (dihedral angle between plane defined by atoms C5, C6, C10 and C11 and plane defined by atoms C7, O3, C8 and C9) is 82.2 (1)°. As was mentioned in previous papers (Vrábel et al., 2004; Švorc et al., 2009), the N1—C5 and N1—C11 bonds are approximately equivalent and both are much longer than the N1—C2 bond. Atom N1 is sp2-hybridized, as evidenced by the sum of the valence angles around it (357.3 (2)°). These data are consistent with conjugation of the lone-pair electrons on N1 with the adjacent carbonyl, similar to what is observed for amides. Intermolecular O—H···O hydrogen bonds link the molecules of (I) into extended chains, which run parallel to the b axis (Fig. 2) and help to stabilize the crystal structure of the compound. Atom O2 participates as acceptor and atom O3 as donator in these intermolecular hydrogen bonds. Bond lengths and angles in the indolizine ring system are in good agreement with values from the literature (Camus et al., 2003).

Related literature top

For general properties of indolizines see: Gundersen et al. (2007); Sundaram et al. (2007); Mikael (1999); Pyne (2005); Karanjule et al. (2006); Chaudhari et al. (2006); Martin et al. (2005). For the synthesis of the title compound see: Šafář et al. (2008). For related structures, see: Vrábel et al. (2004); Švorc et al. (2009). Camus et al. (2003) For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound (3aR,8aS,9S,9aR)-9-hydroxyoctahydrofuro[3,2-f]indolizin- 6(4H)-one was prepared according literature procedures of Šafář et al. (2008).

Refinement top

Atom H2 was refined isotropically. All other H atoms were positioned geometrically and treated as riding atoms, with C—H distances in the range 0.97 - 0.98Å and Uiso set at 1.2Ueq of the parent atom. The absolute configuration could not be reliably determined for this compound using Mo radiation, and has been assigned according to the synthesis; Friedel pairs have been merged.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level (Brandenburg, 2001).
[Figure 2] Fig. 2. Packing view of (I), projected along a and showing the formation of chains running along b.
(3aR,8aS,9S,9aR)-9- Hydroxyperhydrofuro[3,2-f]indolizin-6-one top
Crystal data top
C10H15NO3F(000) = 212
Mr = 197.23Dx = 1.388 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 7268 reflections
a = 6.2856 (1) Åθ = 3.2–29.4°
b = 6.4521 (1) ŵ = 0.10 mm1
c = 11.7698 (2) ÅT = 298 K
β = 98.631 (2)°Block, white
V = 471.92 (1) Å30.45 × 0.29 × 0.04 mm
Z = 2
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
1359 independent reflections
Radiation source: fine-focus sealed tube1151 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.4340 pixels mm-1θmax = 29.5°, θmin = 3.5°
Rotation method data acquisition using ω and ϕ scansh = 88
Absorption correction: analytical
(Clark & Reid, 1995)
k = 88
Tmin = 0.962, Tmax = 0.996l = 1616
12197 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0589P)2 + 0.002P]
where P = (Fo2 + 2Fc2)/3
1359 reflections(Δ/σ)max < 0.001
131 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.12 e Å3
Crystal data top
C10H15NO3V = 471.92 (1) Å3
Mr = 197.23Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.2856 (1) ŵ = 0.10 mm1
b = 6.4521 (1) ÅT = 298 K
c = 11.7698 (2) Å0.45 × 0.29 × 0.04 mm
β = 98.631 (2)°
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
1359 independent reflections
Absorption correction: analytical
(Clark & Reid, 1995)
1151 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.996Rint = 0.024
12197 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0321 restraint
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.18 e Å3
1359 reflectionsΔρmin = 0.12 e Å3
131 parameters
Special details top

Experimental. (face-indexed; Oxford Diffraction, 2006)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.4873 (3)0.2817 (3)0.72325 (14)0.0411 (4)
C30.4877 (3)0.1873 (3)0.84157 (15)0.0459 (4)
H3B0.34670.13320.84940.055*
H3A0.59210.07590.85500.055*
C40.5484 (3)0.3645 (3)0.92481 (13)0.0387 (4)
H4B0.64700.31770.99120.046*
H4A0.42160.42250.95060.046*
C50.6564 (2)0.5248 (3)0.85636 (11)0.0332 (3)
H5A0.61050.66470.87420.040*
C60.9007 (2)0.5135 (3)0.87248 (12)0.0344 (3)
H6A0.94260.36840.86500.041*
C70.9925 (2)0.6393 (3)0.78316 (14)0.0380 (4)
H7A1.14730.61170.79000.046*
C80.9599 (3)0.9602 (3)0.69052 (17)0.0550 (5)
H8B1.08491.04940.69340.066*
H8A0.83151.04440.67230.066*
C90.9646 (3)0.7923 (4)0.60051 (16)0.0532 (5)
H9B1.10880.77320.58230.064*
H9A0.86800.82510.53060.064*
C100.8887 (3)0.5997 (3)0.65890 (13)0.0431 (4)
H10A0.94440.47260.62860.052*
C110.6434 (3)0.5962 (3)0.64646 (13)0.0468 (4)
H11B0.58980.73670.65000.056*
H11A0.58470.53830.57230.056*
N10.5732 (2)0.4730 (2)0.73730 (11)0.0396 (3)
O10.4241 (2)0.1993 (3)0.63124 (11)0.0624 (4)
O20.9924 (2)0.5850 (2)0.98351 (11)0.0487 (3)
H2A0.993 (4)0.493 (5)1.031 (2)0.060 (7)*
O30.9608 (2)0.85665 (19)0.79966 (10)0.0471 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0366 (7)0.0539 (10)0.0319 (7)0.0097 (7)0.0025 (6)0.0024 (7)
C30.0520 (9)0.0514 (10)0.0339 (8)0.0129 (8)0.0044 (7)0.0047 (7)
C40.0391 (7)0.0485 (10)0.0291 (7)0.0010 (7)0.0071 (6)0.0031 (7)
C50.0373 (7)0.0380 (8)0.0242 (6)0.0012 (6)0.0045 (5)0.0003 (6)
C60.0375 (7)0.0378 (8)0.0263 (7)0.0009 (6)0.0004 (5)0.0011 (7)
C70.0325 (7)0.0471 (10)0.0345 (8)0.0000 (7)0.0057 (6)0.0001 (7)
C80.0631 (11)0.0518 (11)0.0482 (10)0.0164 (9)0.0025 (8)0.0130 (9)
C90.0532 (9)0.0700 (13)0.0378 (9)0.0141 (10)0.0116 (7)0.0122 (9)
C100.0545 (9)0.0477 (10)0.0290 (7)0.0050 (8)0.0129 (6)0.0009 (7)
C110.0544 (9)0.0563 (10)0.0271 (7)0.0143 (9)0.0026 (6)0.0087 (8)
N10.0407 (7)0.0506 (8)0.0255 (6)0.0095 (6)0.0019 (5)0.0053 (6)
O10.0721 (8)0.0765 (10)0.0357 (6)0.0308 (8)0.0011 (6)0.0067 (7)
O20.0583 (7)0.0559 (8)0.0275 (6)0.0166 (6)0.0082 (5)0.0040 (6)
O30.0619 (7)0.0427 (7)0.0362 (6)0.0111 (6)0.0053 (5)0.0005 (6)
Geometric parameters (Å, º) top
C2—O11.218 (2)C7—C101.531 (2)
C2—N11.347 (2)C7—H7A0.9800
C2—C31.520 (2)C8—O31.447 (2)
C3—C41.517 (3)C8—C91.519 (3)
C3—H3B0.9700C8—H8B0.9700
C3—H3A0.9700C8—H8A0.9700
C4—C51.530 (2)C9—C101.531 (3)
C4—H4B0.9700C9—H9B0.9700
C4—H4A0.9700C9—H9A0.9700
C5—N11.4591 (18)C10—C111.527 (2)
C5—C61.5204 (19)C10—H10A0.9800
C5—H5A0.9800C11—N11.453 (2)
C6—O21.4238 (17)C11—H11B0.9700
C6—C71.510 (2)C11—H11A0.9700
C6—H6A0.9800O2—H2A0.82 (3)
C7—O31.433 (2)
O1—C2—N1125.45 (17)C6—C7—H7A108.9
O1—C2—C3126.54 (18)C10—C7—H7A108.9
N1—C2—C3108.00 (15)O3—C8—C9106.96 (17)
C4—C3—C2104.81 (15)O3—C8—H8B110.3
C4—C3—H3B110.8C9—C8—H8B110.3
C2—C3—H3B110.8O3—C8—H8A110.3
C4—C3—H3A110.8C9—C8—H8A110.3
C2—C3—H3A110.8H8B—C8—H8A108.6
H3B—C3—H3A108.9C8—C9—C10103.06 (14)
C3—C4—C5104.93 (12)C8—C9—H9B111.2
C3—C4—H4B110.8C10—C9—H9B111.2
C5—C4—H4B110.8C8—C9—H9A111.2
C3—C4—H4A110.8C10—C9—H9A111.2
C5—C4—H4A110.8H9B—C9—H9A109.1
H4B—C4—H4A108.8C11—C10—C9110.32 (16)
N1—C5—C6108.57 (12)C11—C10—C7111.95 (13)
N1—C5—C4103.15 (13)C9—C10—C7100.16 (14)
C6—C5—C4114.91 (13)C11—C10—H10A111.3
N1—C5—H5A110.0C9—C10—H10A111.3
C6—C5—H5A110.0C7—C10—H10A111.3
C4—C5—H5A110.0N1—C11—C10110.56 (13)
O2—C6—C7108.67 (13)N1—C11—H11B109.5
O2—C6—C5111.18 (13)C10—C11—H11B109.5
C7—C6—C5111.84 (12)N1—C11—H11A109.5
O2—C6—H6A108.4C10—C11—H11A109.5
C7—C6—H6A108.4H11B—C11—H11A108.1
C5—C6—H6A108.4C2—N1—C11124.84 (15)
O3—C7—C6110.87 (13)C2—N1—C5114.01 (14)
O3—C7—C10104.17 (14)C11—N1—C5118.47 (13)
C6—C7—C10114.99 (13)C6—O2—H2A110.8 (18)
O3—C7—H7A108.9C7—O3—C8108.27 (13)
O1—C2—C3—C4171.33 (18)O3—C7—C10—C941.27 (16)
N1—C2—C3—C49.79 (19)C6—C7—C10—C9162.80 (14)
C2—C3—C4—C519.80 (18)C9—C10—C11—N1156.02 (15)
C3—C4—C5—N122.25 (17)C7—C10—C11—N145.4 (2)
C3—C4—C5—C695.73 (16)O1—C2—N1—C1112.7 (3)
N1—C5—C6—O2173.44 (14)C3—C2—N1—C11166.20 (16)
C4—C5—C6—O271.68 (18)O1—C2—N1—C5173.78 (17)
N1—C5—C6—C751.76 (17)C3—C2—N1—C55.11 (19)
C4—C5—C6—C7166.64 (13)C10—C11—N1—C2105.48 (18)
O2—C6—C7—O354.82 (17)C10—C11—N1—C554.8 (2)
C5—C6—C7—O368.30 (16)C6—C5—N1—C2104.77 (16)
O2—C6—C7—C10172.63 (14)C4—C5—N1—C217.57 (17)
C5—C6—C7—C1049.52 (19)C6—C5—N1—C1157.6 (2)
O3—C8—C9—C1019.3 (2)C4—C5—N1—C11179.96 (15)
C8—C9—C10—C1182.07 (18)C6—C7—O3—C8154.92 (13)
C8—C9—C10—C736.05 (18)C10—C7—O3—C830.69 (17)
O3—C7—C10—C1175.64 (18)C9—C8—O3—C77.04 (19)
C6—C7—C10—C1145.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.82 (3)2.15 (3)2.9233 (19)157 (2)
Symmetry code: (i) x+2, y1/2, z+2.

Experimental details

Crystal data
Chemical formulaC10H15NO3
Mr197.23
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)6.2856 (1), 6.4521 (1), 11.7698 (2)
β (°) 98.631 (2)
V3)471.92 (1)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.45 × 0.29 × 0.04
Data collection
DiffractometerOxford Diffraction Gemini R CCD
diffractometer
Absorption correctionAnalytical
(Clark & Reid, 1995)
Tmin, Tmax0.962, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
12197, 1359, 1151
Rint0.024
(sin θ/λ)max1)0.692
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.088, 1.09
No. of reflections1359
No. of parameters131
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.12

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.82 (3)2.15 (3)2.9233 (19)157 (2)
Symmetry code: (i) x+2, y1/2, z+2.
 

Acknowledgements

The authors thank the Grant Agency of the Slovak Republic (grant Nos. 1/0161/08 and 1/0817/08) and the Structural Funds, Interreg IIIA for financial support in purchasing the diffractometer and the Development Agency under contract No. APVV-0210–07.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCamus, F., Norberg, B., Bourry, A., Akué-Gédu, R., Rigo, B. & Durant, F. (2003). Acta Cryst. E59, o1002–o1003.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChaudhari, V. D., Ajish Kumar, K. S. & Dhavale, D. D. (2006). Tetrahedron, 62, 4354–4359.  Web of Science CrossRef Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1362.  CrossRef CAS Web of Science Google Scholar
First citationGundersen, L.-L., Charnock, C., Negussie, A. H., Rise, F. & Teklu, S. (2007). Eur. J. Pharm. Sci. 30, 26–35.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKaranjule, N. S., Markad, S. D., Shinde, V. S. & Dhavale, D. D. (2006). J. Org. Chem. 71, 4667–4670.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMartin, R., Murruzzu, C., Pericas, M. A. & Riera, A. (2005). J. Org. Chem. 70, 2325–2328.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMikael, J. P. (1999). Nat. Prod. Rep. 16, 675–709.  Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPyne, S. G. (2005). Curr. Org. Synth. 2, 39–57.  Web of Science CrossRef CAS Google Scholar
First citationŠafář, P., Žúžiová, J., Bobošíková, M., Marchalín, Š., Prónayová, N., Dalla, V. & Daich, A. (2008). Tetrahedron Asymmetry, 19, 467–475.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSundaram, G. S. M., Singh, B., Venkatesh, C., Ila, H. & Junjappa, H. (2007). J. Org. Chem. 72, 5020–5023.  Web of Science CrossRef PubMed CAS Google Scholar
First citationŠvorc, Ľ., Vrábel, V., Žúžiová, J., Bobošíková, M. & Kožíšek, J. (2009). Acta Cryst. E65, o895–o896.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVrábel, V., Kožíšek, J., Langer, V., Marchalín, Š. & Szemes, F. (2004). Acta Cryst. E60, o2211–o2213.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1731-o1732
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds