organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1740-o1741

2,5-Dioxopyrrolidin-1-yl adamantane-1-carboxyl­ate

aSchool of Medical Sciences (Pharmacology) and Bosch Institute, D06, The University of Sydney, New South Wales 2006, Australia, and bCentre for Heavy Metals Research, School of Chemistry, F11, University of Sydney, New South Wales 2006, Australia
*Correspondence e-mail: rcodd@med.usyd.edu.au

(Received 29 May 2009; accepted 24 June 2009; online 4 July 2009)

The title compound, C15H19NO4, contains one crystallographically independent mol­ecule in the asymmetric unit. The N—O—C—O torsion angle is 1.97 (9)°. The two pairs of vicinal H atoms that lie above or below the plane defined by the five-membered pyrrolidine-2,5-dione ring are an average of 6.57 (5)° from being eclipsed. The average absolute C—C—C—C torsion angle in the adamantane skeleton, in which each fused cyclo­hexane ring is in a chair configuration, is 59.99 (5)°. The crystal packing is unremarkable.

Related literature

For the biological activity of adamantane-1-carboxylic acid derivatives, see: De Felice et al. (2007[De Felice, F. G., Velasco, P. T., Lambert, M. P., Viola, K., Fernandez, S. J., Ferreira, S. T. & Klein, W. L. (2007). J. Biol. Chem. 282, 11590-11601.]); Jia et al. (2005[Jia, L., Tomaszewski, J. E., Hanrahan, C., Coward, L., Noker, P., Gorman, G., Nikonenko, B. & Protopopova, M. (2005). Br. J. Pharmacol. 144, 80-87.]); Stouffer et al. (2008[Stouffer, A. L., Acharya, R., Salom, D., Levine, A. S., Di Costanzo, L., Soto, C. S., Tereshko, V., Nanda, V., Stayrook, S. & De Grado, W. F. (2008). Nature (London), 451, 596-599.]). For related structures, see: Molčanov et al. (2006[Molčanov, K., Kojić-Prodić, B., Basarić, N. & Mlinarić-Majerski, K. (2006). Acta Cryst. E62, o5406-o5408.]); Thackeray & White (1977[Thackeray, M. M. & White, J. (1977). Cryst. Struct. Commun. 6, 499-502.]); Homan et al. (1997[Homan, H., Herreros, M., Notario, R., Abboud, J.-L. M., Esseffar, M., Mo, O., Yanez, M., Foces-Foces, C., Ramos-Gallardo, A., Martinez-Ripoll, M., Vegas, A., Molina, M. T., Casanovas, J., Jimenez, P., Roux, M. V. & Turrion, C. (1997). J. Org. Chem. 62, 8503-8512.]). For related structures produced via biocatalysis, see: Bailey et al. (1996[Bailey, P. D., Higgins, S. D., Ridyard, C. H., Roberts, S. M., Rosaire, G. M., Whittaker, R. A. & Willets, A. J. (1996). Chem. Commun. pp. 1833-1834.]); Ridyard et al. (1996[Ridyard, C. H., Whittaker, R. A., Higgins, S. D., Roberts, S. M., Willets, A. J., Bailey, P. D. & Rosair, G. M. (1996). J. Chem. Soc. Perkins Trans. 2, pp. 1811-1819.]). For the structure of a derivative of the title compound, see the following paper: Liu et al. (2009[Liu, J., Clegg, J. K. & Codd, R. (2009). Acta Cryst. E65, o1742-o1743.]).

[Scheme 1]

Experimental

Crystal data
  • C15H19NO4

  • Mr = 277.31

  • Monoclinic, P 21 /n

  • a = 6.6711 (3) Å

  • b = 29.4502 (14) Å

  • c = 7.0291 (3) Å

  • β = 104.447 (2)°

  • V = 1337.26 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 K

  • 0.30 × 0.28 × 0.10 mm

Data collection
  • Bruker APEXII–FR591 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.888, Tmax = 0.990

  • 51912 measured reflections

  • 6819 independent reflections

  • 6104 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.120

  • S = 1.08

  • 6819 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2003[Bruker (2003). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), WinGX32 (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and POV-RAY (Cason, 2002[Cason, C. J. (2002). POV-RAY. Hallam Oaks Pty Ltd, Williamstown, Victoria, Australia.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Adamantane-1-carboxylate-2,5-pyrrolidinedione (I) (Fig. 1.) was prepared in our laboratory as part of our bioconjugate program in drug design. Adamantane-1-carboxylic acid belongs to a family of functionalized polycyclic cage-based compounds that have relevance in the design of therapeutics, with several compounds in clinical use for the treatment of influenza (amantadine) (Stouffer et al., 2008), Alzheimer's disease (memantine) (De Felice et al., 2007) and pulmonary tuberculosis (SQ109) (Jia et al., 2005). The torsional bond in I defined by atoms N1—O2—C11—O1 is 1.97 (9) °. The distance between the 2,5-pyrrolidinedione-derived oxo groups and the carbonyl O atom in I (O1) is 3.52 (1) Å (O4–O1) or 3.39 (1) Å (O3—O1); this difference arises from the O4 group lying 0.10 (1) Å below the plane defined by N1, C13 and C14 and the O3 group lying 0.28 (1) Å above this same plane and on the same side as O1. Amide conjugates of adamantane-1-carboxylic acid might furnish compounds with the ability to traverse cell membranes.

Related literature top

For the biological activity of adamantane-1-carboxylic acid derivatives, see: De Felice et al. (2007); Jia et al. (2005); Stouffer et al. (2008). For related structures, see: Molčanov et al. (2006); Thackeray & White (1977); Homan et al. (1997). For related structures produced via biocatalysis, see: Bailey et al. (1996); Ridyard et al. (1996). For the structure of a derivative of the title compound, see the next paper in this journal: Liu et al. (2009).

Experimental top

A white precipitate of I was formed after the addition of water (1 ml) to a cooled solution of DMF (10 ml) containing N-hydroxysuccinimide (NHS: 0.29 g, 2.55 mmol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC: 0.39 g, 2.00 mmol) and adamantane-1-carboxylic acid (0.46 g, 2.55 mmol) that had been heated to 40 ° C for 4 h. The product was dried in vacuo; colourless crystals of I appeared after approximately 1 month from a 4.5 mg mL-1 solution of I in ethanol:water (7:3).

Refinement top

C and N bound-H (atoms were included in idealized positions and refined using a riding-model approximation, with C—H bond lengths fixed at 1.00 Å, 0.99 Å,for methine and methylene H atoms respectively. Uiso(H) values were fixed at 1.2Ueq of the parent atoms for all H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003) and XPREP (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), WinGX32 (Farrugia, 1999) and POV-RAY (Cason, 2002); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. ORTEP representation of I shown with 50% probability ellipsoids.
2,5-Dioxopyrrolidin-1-yl adamantane-1-carboxylate top
Crystal data top
C15H19NO4F(000) = 592
Mr = 277.31Dx = 1.377 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9946 reflections
a = 6.6711 (3) Åθ = 2.8–37.1°
b = 29.4502 (14) ŵ = 0.10 mm1
c = 7.0291 (3) ÅT = 150 K
β = 104.447 (2)°Plate, colourless
V = 1337.26 (10) Å30.30 × 0.28 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII–FR591
diffractometer
6819 independent reflections
Radiation source: rotating anode6104 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω+ϕ scansθmax = 37.2°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1111
Tmin = 0.888, Tmax = 0.990k = 4950
51912 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.057P)2 + 0.2898P]
where P = (Fo2 + 2Fc2)/3
6819 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C15H19NO4V = 1337.26 (10) Å3
Mr = 277.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.6711 (3) ŵ = 0.10 mm1
b = 29.4502 (14) ÅT = 150 K
c = 7.0291 (3) Å0.30 × 0.28 × 0.10 mm
β = 104.447 (2)°
Data collection top
Bruker APEXII–FR591
diffractometer
6819 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
6104 reflections with I > 2σ(I)
Tmin = 0.888, Tmax = 0.990Rint = 0.032
51912 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.08Δρmax = 0.44 e Å3
6819 reflectionsΔρmin = 0.29 e Å3
181 parameters
Special details top

Experimental. The crystal was coated in Exxon Paratone N hydrocarbon oil and mounted on a thin mohair fibre attached to a copper pin. Upon mounting on the diffractometer, the crystal was quenched to 150(K) under a cold nitrogen gas stream supplied by an Oxford Cryosystems Cryostream and data were collected at this temperature.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.22052 (11)0.15040 (3)0.40895 (12)0.02581 (14)
H1A1.26920.12040.37530.031*
H1B1.33950.16660.49460.031*
C21.04957 (11)0.14401 (2)0.51785 (10)0.02258 (13)
H21.10550.12620.64070.027*
C30.86612 (11)0.11819 (2)0.38550 (10)0.02168 (12)
H3A0.75670.11350.45620.026*
H3B0.91270.08810.35090.026*
C40.77940 (9)0.146072 (19)0.19724 (8)0.01413 (9)
C50.95139 (10)0.15250 (3)0.08694 (9)0.02086 (11)
H5A0.99790.12250.05070.025*
H5B0.89660.17000.03520.025*
C61.13503 (10)0.17802 (3)0.22017 (11)0.02310 (12)
H61.24640.18210.14910.028*
C71.06322 (11)0.22477 (2)0.27366 (11)0.02349 (13)
H7A1.18170.24140.35740.028*
H7B1.00890.24270.15270.028*
C80.89390 (11)0.21863 (2)0.38360 (10)0.01981 (11)
H80.84720.24910.41880.024*
C90.97680 (12)0.19081 (3)0.57139 (10)0.02357 (13)
H9A0.86650.18690.64170.028*
H9B1.09390.20710.65930.028*
C100.70934 (10)0.19322 (2)0.25152 (10)0.01816 (10)
H10A0.65300.21100.13040.022*
H10B0.59850.18970.32140.022*
C110.59920 (9)0.12338 (2)0.05527 (9)0.01710 (10)
C120.27538 (10)0.04257 (2)0.03135 (10)0.01826 (10)
C130.14462 (10)0.02270 (2)0.22012 (10)0.02094 (11)
H13A0.01970.04150.27120.025*
H13B0.10060.00860.19810.025*
C140.28296 (11)0.02249 (2)0.36545 (10)0.02184 (12)
H14A0.31500.00900.39710.026*
H14B0.21340.03820.48880.026*
C150.47840 (10)0.04733 (2)0.26279 (10)0.01859 (11)
N10.46311 (9)0.054259 (19)0.07064 (8)0.01894 (10)
O10.45874 (9)0.14099 (2)0.06059 (9)0.02874 (13)
O20.61824 (8)0.075815 (16)0.06775 (8)0.02138 (10)
O30.62486 (10)0.05906 (2)0.32307 (10)0.02936 (12)
O40.23579 (11)0.04800 (2)0.12597 (9)0.02915 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0157 (3)0.0261 (3)0.0305 (3)0.0019 (2)0.0038 (2)0.0024 (2)
C20.0245 (3)0.0195 (2)0.0178 (2)0.0049 (2)0.0058 (2)0.00400 (19)
C30.0244 (3)0.0172 (2)0.0185 (2)0.0061 (2)0.0039 (2)0.00501 (18)
C40.0131 (2)0.01371 (19)0.01396 (19)0.00133 (16)0.00043 (16)0.00029 (15)
C50.0171 (2)0.0291 (3)0.0169 (2)0.0011 (2)0.00514 (19)0.0038 (2)
C60.0144 (2)0.0322 (3)0.0230 (3)0.0042 (2)0.0052 (2)0.0018 (2)
C70.0217 (3)0.0217 (3)0.0246 (3)0.0085 (2)0.0012 (2)0.0042 (2)
C80.0196 (3)0.0159 (2)0.0218 (3)0.00142 (18)0.0012 (2)0.00345 (18)
C90.0275 (3)0.0261 (3)0.0153 (2)0.0063 (2)0.0020 (2)0.0037 (2)
C100.0148 (2)0.0168 (2)0.0216 (2)0.00051 (17)0.00218 (19)0.00262 (18)
C110.0156 (2)0.0163 (2)0.0173 (2)0.00132 (17)0.00011 (18)0.00125 (17)
C120.0194 (2)0.0146 (2)0.0210 (2)0.00237 (18)0.0057 (2)0.00127 (18)
C130.0168 (2)0.0197 (2)0.0248 (3)0.00409 (19)0.0022 (2)0.0032 (2)
C140.0234 (3)0.0216 (3)0.0189 (2)0.0042 (2)0.0023 (2)0.0043 (2)
C150.0193 (2)0.0166 (2)0.0199 (2)0.00113 (18)0.0051 (2)0.00084 (18)
N10.0178 (2)0.0196 (2)0.0182 (2)0.00664 (17)0.00223 (17)0.00448 (16)
O10.0241 (3)0.0233 (2)0.0296 (3)0.00305 (18)0.0106 (2)0.00286 (19)
O20.0205 (2)0.01610 (18)0.0224 (2)0.00444 (15)0.00436 (17)0.00179 (15)
O30.0271 (3)0.0312 (3)0.0341 (3)0.0051 (2)0.0157 (2)0.0009 (2)
O40.0369 (3)0.0291 (3)0.0254 (2)0.0057 (2)0.0152 (2)0.0041 (2)
Geometric parameters (Å, º) top
C1—C21.5354 (12)C8—C91.5348 (10)
C1—C61.5395 (11)C8—C101.5386 (9)
C1—H1A0.9900C8—H81.0000
C1—H1B0.9900C9—H9A0.9900
C2—C91.5387 (11)C9—H9B0.9900
C2—C31.5406 (9)C10—H10A0.9900
C2—H21.0000C10—H10B0.9900
C3—C41.5421 (8)C11—O11.1956 (8)
C3—H3A0.9900C11—O21.4072 (8)
C3—H3B0.9900C12—O41.2099 (9)
C4—C111.5130 (8)C12—N11.3913 (9)
C4—C101.5431 (8)C12—C131.5121 (9)
C4—C51.5483 (9)C13—C141.5381 (10)
C5—C61.5394 (10)C13—H13A0.9900
C5—H5A0.9900C13—H13B0.9900
C5—H5B0.9900C14—C151.5120 (9)
C6—C71.5351 (11)C14—H14A0.9900
C6—H61.0000C14—H14B0.9900
C7—C81.5301 (11)C15—O31.2083 (9)
C7—H7A0.9900C15—N11.3946 (9)
C7—H7B0.9900N1—O21.3849 (7)
C2—C1—C6109.45 (5)C7—C8—C10109.46 (5)
C2—C1—H1A109.8C9—C8—C10108.77 (5)
C6—C1—H1A109.8C7—C8—H8109.5
C2—C1—H1B109.8C9—C8—H8109.5
C6—C1—H1B109.8C10—C8—H8109.5
H1A—C1—H1B108.2C8—C9—C2109.62 (5)
C1—C2—C9109.33 (6)C8—C9—H9A109.7
C1—C2—C3109.66 (6)C2—C9—H9A109.7
C9—C2—C3109.77 (6)C8—C9—H9B109.7
C1—C2—H2109.4C2—C9—H9B109.7
C9—C2—H2109.4H9A—C9—H9B108.2
C3—C2—H2109.4C8—C10—C4109.92 (5)
C2—C3—C4109.07 (5)C8—C10—H10A109.7
C2—C3—H3A109.9C4—C10—H10A109.7
C4—C3—H3A109.9C8—C10—H10B109.7
C2—C3—H3B109.9C4—C10—H10B109.7
C4—C3—H3B109.9H10A—C10—H10B108.2
H3A—C3—H3B108.3O1—C11—O2121.17 (6)
C11—C4—C3113.39 (5)O1—C11—C4128.04 (6)
C11—C4—C10108.71 (5)O2—C11—C4110.74 (5)
C3—C4—C10109.81 (5)O4—C12—N1124.15 (6)
C11—C4—C5106.85 (5)O4—C12—C13130.05 (7)
C3—C4—C5109.19 (5)N1—C12—C13105.80 (5)
C10—C4—C5108.77 (5)C12—C13—C14105.90 (5)
C6—C5—C4109.37 (5)C12—C13—H13A110.6
C6—C5—H5A109.8C14—C13—H13A110.6
C4—C5—H5A109.8C12—C13—H13B110.6
C6—C5—H5B109.8C14—C13—H13B110.6
C4—C5—H5B109.8H13A—C13—H13B108.7
H5A—C5—H5B108.2C15—C14—C13105.66 (5)
C7—C6—C5109.70 (6)C15—C14—H14A110.6
C7—C6—C1109.50 (6)C13—C14—H14A110.6
C5—C6—C1109.51 (6)C15—C14—H14B110.6
C7—C6—H6109.4C13—C14—H14B110.6
C5—C6—H6109.4H14A—C14—H14B108.7
C1—C6—H6109.4O3—C15—N1123.96 (6)
C8—C7—C6109.43 (5)O3—C15—C14130.34 (7)
C8—C7—H7A109.8N1—C15—C14105.68 (5)
C6—C7—H7A109.8O2—N1—C12121.72 (5)
C8—C7—H7B109.8O2—N1—C15121.67 (6)
C6—C7—H7B109.8C12—N1—C15116.30 (5)
H7A—C7—H7B108.2N1—O2—C11111.87 (5)
C7—C8—C9110.14 (6)
C6—C1—C2—C960.05 (7)C3—C4—C10—C859.67 (7)
C6—C1—C2—C360.35 (7)C5—C4—C10—C859.76 (6)
C1—C2—C3—C460.62 (7)C3—C4—C11—O1151.19 (8)
C9—C2—C3—C459.51 (8)C10—C4—C11—O128.75 (9)
C2—C3—C4—C11179.35 (6)C5—C4—C11—O188.47 (9)
C2—C3—C4—C1058.83 (7)C3—C4—C11—O231.38 (8)
C2—C3—C4—C560.35 (7)C10—C4—C11—O2153.82 (5)
C11—C4—C5—C6176.77 (5)C5—C4—C11—O288.96 (6)
C3—C4—C5—C660.23 (7)O4—C12—C13—C14177.07 (7)
C10—C4—C5—C659.58 (7)N1—C12—C13—C142.61 (7)
C4—C5—C6—C760.28 (7)C12—C13—C14—C156.58 (7)
C4—C5—C6—C159.93 (7)C13—C14—C15—O3173.15 (7)
C2—C1—C6—C760.38 (7)C13—C14—C15—N18.13 (7)
C2—C1—C6—C559.95 (8)O4—C12—N1—O23.72 (10)
C5—C6—C7—C860.42 (7)C13—C12—N1—O2176.58 (5)
C1—C6—C7—C859.79 (7)O4—C12—N1—C15177.39 (7)
C6—C7—C8—C959.43 (7)C13—C12—N1—C152.91 (8)
C6—C7—C8—C1060.11 (7)O3—C15—N1—O20.32 (10)
C7—C8—C9—C259.33 (7)C14—C15—N1—O2179.14 (6)
C10—C8—C9—C260.63 (7)O3—C15—N1—C12173.99 (7)
C1—C2—C9—C859.41 (7)C14—C15—N1—C127.19 (8)
C3—C2—C9—C860.91 (8)C12—N1—O2—C1189.36 (7)
C7—C8—C10—C460.29 (7)C15—N1—O2—C1183.97 (7)
C9—C8—C10—C460.09 (7)O1—C11—O2—N11.97 (9)
C11—C4—C10—C8175.76 (5)C4—C11—O2—N1175.66 (5)

Experimental details

Crystal data
Chemical formulaC15H19NO4
Mr277.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)6.6711 (3), 29.4502 (14), 7.0291 (3)
β (°) 104.447 (2)
V3)1337.26 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.28 × 0.10
Data collection
DiffractometerBruker APEXII–FR591
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.888, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
51912, 6819, 6104
Rint0.032
(sin θ/λ)max1)0.850
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.120, 1.08
No. of reflections6819
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.29

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003) and XPREP (Bruker, 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX32 (Farrugia, 1999) and POV-RAY (Cason, 2002), enCIFer (Allen et al., 2004).

 

Acknowledgements

Support from the NHMRC-Project Grant 570844 (RC) and from the University of Sydney (2009 Bridging Support Grant (RC), co-funded postgraduate scholarship from the Faculty of Medicine (JL)) is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBailey, P. D., Higgins, S. D., Ridyard, C. H., Roberts, S. M., Rosaire, G. M., Whittaker, R. A. & Willets, A. J. (1996). Chem. Commun. pp. 1833–1834.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2003). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCason, C. J. (2002). POV-RAY. Hallam Oaks Pty Ltd, Williamstown, Victoria, Australia.  Google Scholar
First citationDe Felice, F. G., Velasco, P. T., Lambert, M. P., Viola, K., Fernandez, S. J., Ferreira, S. T. & Klein, W. L. (2007). J. Biol. Chem. 282, 11590–11601.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHoman, H., Herreros, M., Notario, R., Abboud, J.-L. M., Esseffar, M., Mo, O., Yanez, M., Foces-Foces, C., Ramos-Gallardo, A., Martinez-Ripoll, M., Vegas, A., Molina, M. T., Casanovas, J., Jimenez, P., Roux, M. V. & Turrion, C. (1997). J. Org. Chem. 62, 8503–8512.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationJia, L., Tomaszewski, J. E., Hanrahan, C., Coward, L., Noker, P., Gorman, G., Nikonenko, B. & Protopopova, M. (2005). Br. J. Pharmacol. 144, 80–87.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, J., Clegg, J. K. & Codd, R. (2009). Acta Cryst. E65, o1742–o1743.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMolčanov, K., Kojić-Prodić, B., Basarić, N. & Mlinarić-Majerski, K. (2006). Acta Cryst. E62, o5406–o5408.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRidyard, C. H., Whittaker, R. A., Higgins, S. D., Roberts, S. M., Willets, A. J., Bailey, P. D. & Rosair, G. M. (1996). J. Chem. Soc. Perkins Trans. 2, pp. 1811–1819.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStouffer, A. L., Acharya, R., Salom, D., Levine, A. S., Di Costanzo, L., Soto, C. S., Tereshko, V., Nanda, V., Stayrook, S. & De Grado, W. F. (2008). Nature (London), 451, 596–599.  Web of Science CrossRef PubMed CAS Google Scholar
First citationThackeray, M. M. & White, J. (1977). Cryst. Struct. Commun. 6, 499–502.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1740-o1741
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds