organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1742-o1743

Methyl 3-[(1-adamantylcarbon­yl­oxy)amino­carbon­yl]propanoate

aSchool of Medical Sciences (Pharmacology) and Bosch Institute, D06, The University of Sydney, New South Wales 2006, Australia, and bCentre for Heavy Metals Research, School of Chemistry, F11, University of Sydney, New South Wales 2006, Australia
*Correspondence e-mail: rcodd@med.usyd.edu.au

(Received 29 May 2009; accepted 24 June 2009; online 4 July 2009)

In the title compound, C16H23NO5, the H—N—O—C torsion angle is 98.6 (1)°, which is of a similar magnitude to other N,O-diacyl­hydroxy­lamines. The N—O distance is 1.4029 (14) Å, which is similar to the N—O distance in other N,O-diacyl­hydroxy­lamines. In the crystal, intermolecular N—H⋯O hydrogen bonds generate chains of molecules.

Related literature

For the biological activity of compounds related to N,O-diacyl­hydroxy­lamines, see: Pelto & Pratt (2008[Pelto, R. B. & Pratt, R. F. (2008). Biochemistry, 47, 12037-12046.]). For linear N,O-diacyl­hydroxy­lamines, see: Göttlicher & Ochsenreiter (1974[Göttlicher, S. & Ochsenreiter, P. (1974). Chem. Ber. 107, 398-413.]); Schraml et al. (2004[Schraml, J., Sykora, J., Fiedler, P., Roithova, J., Mindl, J., Blechta, V., Cisarova, I. & Exner, O. (2004). Org. Biomol. Chem. 2, 2311-2314.]); Baert et al. (1984[Baert, F., Lamiot, J., Couturier, D., Roussel, D. & Ricart, G. (1984). Acta Cryst. C40, 1071-1072.]); Masui et al. (1983[Masui, M., Ueshima, T., Ozaki, S., Fujiwara, T. & Tomita, K. (1983). Chem. Pharm. Bull. 31, 784-786.]); Grassi et al. (2002[Grassi, G., Cordaro, M., Bruno, G. & Nicolo, F. (2002). Helv. Chim. Acta, 85, 196-205.]); Buscemi et al. (2006[Buscemi, S., Pace, A., Palumbo Piccionello, A., Pibiri, I., Vivona, N., Giorgi, G., Mazzanti, A. & Spinelli, D. (2006). J. Org. Chem. 71, 8106-8113.]). For cyclic N,O-diacyl­hydroxy­lamines, see: Kongprakaiwoot et al. (2008[Kongprakaiwoot, N., Noll, B. C. & Brown, S. N. (2008). Inorg. Chem. 47, 11902-11909.]). For a precursor of the title compound, see: Liu et al. (2009[Liu, J., Clegg, J. K. & Codd, R. (2009). Acta Cryst. E65, o1740-o1741.]).

[Scheme 1]

Experimental

Crystal data
  • C16H23NO5

  • Mr = 309.35

  • Orthorhombic, P c c n

  • a = 15.7837 (5) Å

  • b = 21.0715 (7) Å

  • c = 9.5341 (3) Å

  • V = 3170.91 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Bruker APEXII-FR591 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.851, Tmax = 0.981

  • 22952 measured reflections

  • 4586 independent reflections

  • 2890 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.132

  • S = 1.04

  • 4586 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.88 1.87 2.7250 (19) 165
Symmetry code: (i) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2003[Bruker (2003). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), WinGX32 (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), POV-RAY (Cason, 2002[Cason, C. J. (2002). POV-RAY. Hallam Oaks Pty Ltd, Williamstown, Victoria, Australia.]) and WebLab ViewerPro (Molecular Simulations, 2000[Molecular Simulations (2000). WebLab ViewerPro. Accelrys Software Inc., San Diego, California, USA.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

O-Adamantanecarboxoyl-N-4-methoxy-4-oxobutanoyl-hydroxylamine (I) (Fig 1.) was prepared in our laboratory as part of our program in understanding resonance and tautomerism in biologically relevant molecules such as N,O-diacylhydroxylamines and hydroxamic acids. The torsion angle defined by H—N—O—C in each of N,O-diacetylhydroxylamine (-99.0 (1) °), N-acetyl-O-benzoylhydroxylamine (-101.3 (1) °), and N-benzoyl-O-acetylhydroxylamine (-94.1 (1) °) is negative, which is distinct from the analogous angle in N,O-dibenzoylhydroxylamine determined by the same group, which is positive (99.7 (1) °) (Schraml et al., 2004). The positive torsion angle defined by H1—N1—O4—C6 in I is 98.6 (1) °, which is akin to N,O-dibenzoylhydroxylamine. The N—O distance in I (N1—O4 = 1.4029 (14) Å) is similar to the N—O distance in other N,O-diacylhydroxylamines as cited above. Intermolecular hydrogen bonds exist in I between respective amide groups, with H1···O3 = 1.87 Å (Table 1) forming an infinite one-dimensional polymer extending along the c-axis (Fig 2.).

Related literature top

For the biological activity of compounds related to N,O-diacylhydroxylamines, see: Pelto & Pratt (2008). For linear N,O-diacylhydroxylamines, see: Göttlicher & Ochsenreiter (1974); Schraml et al. (2004); Baert et al. (1984); Masui et al. (1983); Grassi et al. (2002); Buscemi et al. (2006). For cyclic N,O-diacylhydroxylamines, see: Kongprakaiwoot et al. (2008). For a precursor of the title compound, see: Liu et al. (2009).

Experimental top

O-Adamantanecarboxoyl-N-4-methoxy-4-oxobutanoyl-hydroxylamine (I) was isolated from a methanol solution (14 ml) containing adamantane-1-carboxylate-2,5-pyrrolidinedione (0.25 g, 0.89 mmol) (Liu, et al., 2009) and NaOH (0.018 g, 0.45 mmol). The product was dried in vacuo; colourless crystals of I appeared after approximately 1 month from a 4.5 mg mL-1 solution of I in ethanol:water (7:3).

Refinement top

C and N bound-H (atoms were included in idealized positions and refined using a riding-model approximation, with C—H bond lengths fixed at 1.00 Å, 0.99 Å, 0.98 Å for methine, methylene and methyl H atoms respectively. N—H bond lengths fixed at 0.88 Å. Uiso(H) values were fixed at 1.2Ueq of the parent atoms for all H atoms except methyl H atoms for which 1.5Ueq of the parent atoms was used.

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT and XPREP (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), WinGX32 (Farrugia, 1999), POV-RAY (Cason, 2002) and WebLab ViewerPro (Molecular Simulations, 2000); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. ORTEP representation of I shown with 50% probability ellipsoids.
[Figure 2] Fig. 2. A schematic representation of the one dimenisonal polymer formed through hydrogen bonding interactions in I. Dashed lines indicate hydrogen bonds.
Methyl 3-[(1-adamantylcarbonyloxy)aminocarbonyl]propanoate top
Crystal data top
C16H23NO5F(000) = 1328
Mr = 309.35Dx = 1.296 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 3869 reflections
a = 15.7837 (5) Åθ = 2.8–30.0°
b = 21.0715 (7) ŵ = 0.10 mm1
c = 9.5341 (3) ÅT = 150 K
V = 3170.91 (18) Å3Block, colourless
Z = 80.30 × 0.20 × 0.15 mm
Data collection top
Bruker APEXII-FR591
diffractometer
4586 independent reflections
Radiation source: rotating anode2890 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω+ϕ scansθmax = 30.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 2222
Tmin = 0.851, Tmax = 0.981k = 2629
22952 measured reflectionsl = 1311
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0599P)2 + 0.4178P]
where P = (Fo2 + 2Fc2)/3
4586 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C16H23NO5V = 3170.91 (18) Å3
Mr = 309.35Z = 8
Orthorhombic, PccnMo Kα radiation
a = 15.7837 (5) ŵ = 0.10 mm1
b = 21.0715 (7) ÅT = 150 K
c = 9.5341 (3) Å0.30 × 0.20 × 0.15 mm
Data collection top
Bruker APEXII-FR591
diffractometer
4586 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2890 reflections with I > 2σ(I)
Tmin = 0.851, Tmax = 0.981Rint = 0.036
22952 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.04Δρmax = 0.25 e Å3
4586 reflectionsΔρmin = 0.26 e Å3
200 parameters
Special details top

Experimental. The crystal was coated in Exxon Paratone N hydrocarbon oil and mounted on a thin mohair fibre attached to a copper pin. Upon mounting on the diffractometer, the crystal was quenched to 150(K) under a cold nitrogen gas stream supplied by an Oxford Cryosystems Cryostream and data were collected at this temperature.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.10511 (9)0.03188 (7)0.34190 (19)0.0397 (4)
H1A0.12860.05210.42590.060*
H1B0.11950.01340.34220.060*
H1C0.12890.05200.25800.060*
C20.01542 (9)0.09834 (6)0.33007 (15)0.0282 (3)
C30.11059 (9)0.09992 (7)0.32346 (18)0.0347 (3)
H3A0.12930.08520.22990.042*
H3B0.13390.07040.39440.042*
C40.14536 (9)0.16607 (7)0.34972 (19)0.0395 (4)
H4A0.11740.19650.28550.047*
H4B0.13210.17900.44710.047*
C50.24014 (10)0.16868 (7)0.32743 (19)0.0381 (4)
C60.41331 (9)0.12429 (6)0.41915 (16)0.0285 (3)
C70.50576 (8)0.13370 (5)0.38462 (14)0.0217 (3)
C80.51335 (8)0.13881 (6)0.22281 (15)0.0264 (3)
H8A0.48890.10050.17820.032*
H8B0.48160.17630.18900.032*
C90.60700 (8)0.14499 (6)0.18337 (15)0.0272 (3)
H90.61240.14800.07910.033*
C100.64442 (8)0.20472 (6)0.25077 (15)0.0277 (3)
H10A0.70480.20900.22400.033*
H10B0.61370.24270.21670.033*
C110.63684 (8)0.20033 (6)0.40991 (15)0.0271 (3)
H110.66120.23950.45330.032*
C120.54299 (8)0.19452 (6)0.45073 (16)0.0269 (3)
H12A0.51140.23210.41690.032*
H12B0.53750.19260.55410.032*
C130.55512 (8)0.07550 (6)0.43587 (16)0.0279 (3)
H13A0.53130.03660.39300.034*
H13B0.54990.07180.53900.034*
C140.64869 (9)0.08217 (6)0.39547 (17)0.0321 (3)
H140.68080.04420.42920.039*
C150.68529 (9)0.14227 (7)0.46296 (18)0.0358 (4)
H15A0.68040.13940.56630.043*
H15B0.74600.14630.43880.043*
C160.65534 (9)0.08664 (6)0.23537 (17)0.0341 (4)
H16A0.71560.08980.20750.041*
H16B0.63130.04790.19220.041*
N10.28451 (7)0.17669 (6)0.44376 (15)0.0376 (3)
H10.25950.17860.52620.045*
O10.01378 (6)0.03915 (5)0.34139 (12)0.0391 (3)
O20.02969 (6)0.14408 (5)0.32255 (14)0.0420 (3)
O30.27389 (7)0.16496 (7)0.21147 (14)0.0595 (4)
O40.37279 (6)0.18202 (4)0.43133 (12)0.0349 (3)
O50.37653 (7)0.07535 (5)0.43361 (14)0.0506 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0367 (8)0.0359 (7)0.0464 (10)0.0018 (6)0.0100 (8)0.0004 (7)
C20.0327 (7)0.0296 (6)0.0223 (7)0.0045 (5)0.0017 (6)0.0017 (6)
C30.0298 (7)0.0359 (7)0.0384 (9)0.0084 (6)0.0016 (7)0.0012 (6)
C40.0256 (7)0.0431 (8)0.0497 (11)0.0040 (6)0.0011 (7)0.0097 (7)
C50.0289 (7)0.0449 (8)0.0406 (10)0.0021 (6)0.0015 (8)0.0026 (7)
C60.0271 (7)0.0301 (6)0.0281 (8)0.0026 (5)0.0018 (6)0.0000 (6)
C70.0217 (6)0.0227 (6)0.0206 (7)0.0040 (4)0.0008 (6)0.0009 (5)
C80.0281 (7)0.0299 (6)0.0211 (7)0.0070 (5)0.0028 (6)0.0010 (5)
C90.0313 (7)0.0299 (6)0.0203 (7)0.0075 (5)0.0042 (6)0.0012 (5)
C100.0273 (6)0.0239 (6)0.0318 (9)0.0060 (5)0.0018 (6)0.0058 (5)
C110.0270 (6)0.0253 (6)0.0289 (8)0.0078 (5)0.0055 (6)0.0005 (5)
C120.0305 (7)0.0268 (6)0.0234 (8)0.0031 (5)0.0018 (6)0.0027 (5)
C130.0306 (7)0.0238 (6)0.0294 (8)0.0035 (5)0.0021 (7)0.0074 (5)
C140.0264 (7)0.0267 (6)0.0433 (10)0.0033 (5)0.0003 (7)0.0103 (6)
C150.0259 (7)0.0435 (8)0.0382 (9)0.0039 (6)0.0099 (7)0.0099 (7)
C160.0304 (7)0.0259 (6)0.0459 (10)0.0028 (5)0.0123 (7)0.0021 (6)
N10.0215 (6)0.0512 (7)0.0401 (8)0.0015 (5)0.0037 (6)0.0063 (6)
O10.0342 (5)0.0295 (5)0.0538 (8)0.0035 (4)0.0041 (5)0.0012 (5)
O20.0312 (5)0.0327 (5)0.0621 (8)0.0069 (4)0.0012 (6)0.0032 (5)
O30.0365 (7)0.1062 (11)0.0358 (8)0.0027 (7)0.0009 (6)0.0004 (7)
O40.0213 (5)0.0350 (5)0.0485 (7)0.0011 (4)0.0008 (5)0.0027 (5)
O50.0314 (5)0.0362 (6)0.0841 (10)0.0085 (4)0.0154 (6)0.0045 (6)
Geometric parameters (Å, º) top
C1—O11.4498 (17)C9—C161.5296 (19)
C1—H1A0.9800C9—C101.5316 (18)
C1—H1B0.9800C9—H91.0000
C1—H1C0.9800C10—C111.525 (2)
C2—O21.2005 (16)C10—H10A0.9900
C2—O11.3340 (16)C10—H10B0.9900
C2—C31.5038 (19)C11—C151.5289 (19)
C3—C41.519 (2)C11—C121.5364 (18)
C3—H3A0.9900C11—H111.0000
C3—H3B0.9900C12—H12A0.9900
C4—C51.512 (2)C12—H12B0.9900
C4—H4A0.9900C13—C141.5327 (19)
C4—H4B0.9900C13—H13A0.9900
C5—O31.230 (2)C13—H13B0.9900
C5—N11.322 (2)C14—C161.533 (2)
C6—O51.1913 (16)C14—C151.533 (2)
C6—O41.3792 (16)C14—H141.0000
C6—C71.5090 (18)C15—H15A0.9900
C7—C131.5329 (17)C15—H15B0.9900
C7—C121.5443 (17)C16—H16A0.9900
C7—C81.5510 (19)C16—H16B0.9900
C8—C91.5308 (18)N1—O41.4029 (14)
C8—H8A0.9900N1—H10.8800
C8—H8B0.9900
O1—C1—H1A109.5C11—C10—H10A109.7
O1—C1—H1B109.5C9—C10—H10A109.7
H1A—C1—H1B109.5C11—C10—H10B109.7
O1—C1—H1C109.5C9—C10—H10B109.7
H1A—C1—H1C109.5H10A—C10—H10B108.2
H1B—C1—H1C109.5C10—C11—C15109.78 (12)
O2—C2—O1123.41 (13)C10—C11—C12109.42 (11)
O2—C2—C3124.90 (13)C15—C11—C12109.55 (11)
O1—C2—C3111.67 (11)C10—C11—H11109.4
C2—C3—C4111.98 (11)C15—C11—H11109.4
C2—C3—H3A109.2C12—C11—H11109.4
C4—C3—H3A109.2C11—C12—C7109.24 (11)
C2—C3—H3B109.2C11—C12—H12A109.8
C4—C3—H3B109.2C7—C12—H12A109.8
H3A—C3—H3B107.9C11—C12—H12B109.8
C5—C4—C3111.57 (12)C7—C12—H12B109.8
C5—C4—H4A109.3H12A—C12—H12B108.3
C3—C4—H4A109.3C7—C13—C14109.65 (10)
C5—C4—H4B109.3C7—C13—H13A109.7
C3—C4—H4B109.3C14—C13—H13A109.7
H4A—C4—H4B108.0C7—C13—H13B109.7
O3—C5—N1122.19 (14)C14—C13—H13B109.7
O3—C5—C4123.55 (15)H13A—C13—H13B108.2
N1—C5—C4114.25 (15)C13—C14—C16108.77 (12)
O5—C6—O4121.84 (12)C13—C14—C15109.46 (12)
O5—C6—C7127.62 (12)C16—C14—C15109.96 (11)
O4—C6—C7110.54 (10)C13—C14—H14109.5
C6—C7—C13108.46 (10)C16—C14—H14109.5
C6—C7—C12112.83 (11)C15—C14—H14109.5
C13—C7—C12109.90 (11)C11—C15—C14109.49 (11)
C6—C7—C8107.50 (11)C11—C15—H15A109.8
C13—C7—C8109.47 (11)C14—C15—H15A109.8
C12—C7—C8108.61 (10)C11—C15—H15B109.8
C9—C8—C7108.95 (11)C14—C15—H15B109.8
C9—C8—H8A109.9H15A—C15—H15B108.2
C7—C8—H8A109.9C9—C16—C14109.75 (11)
C9—C8—H8B109.9C9—C16—H16A109.7
C7—C8—H8B109.9C14—C16—H16A109.7
H8A—C8—H8B108.3C9—C16—H16B109.7
C16—C9—C8109.49 (10)C14—C16—H16B109.7
C16—C9—C10109.40 (12)H16A—C16—H16B108.2
C8—C9—C10109.83 (11)C5—N1—O4117.73 (13)
C16—C9—H9109.4C5—N1—H1121.1
C8—C9—H9109.4O4—N1—H1121.1
C10—C9—H9109.4C2—O1—C1116.27 (11)
C11—C10—C9109.72 (10)C6—O4—N1113.40 (10)
O2—C2—C3—C417.1 (2)C13—C7—C12—C1158.97 (15)
O1—C2—C3—C4164.72 (13)C8—C7—C12—C1160.76 (14)
C2—C3—C4—C5173.84 (14)C6—C7—C13—C14177.11 (12)
C3—C4—C5—O370.9 (2)C12—C7—C13—C1459.12 (15)
C3—C4—C5—N1110.41 (16)C8—C7—C13—C1460.09 (14)
O5—C6—C7—C1326.1 (2)C7—C13—C14—C1660.43 (14)
O4—C6—C7—C13154.74 (12)C7—C13—C14—C1559.74 (16)
O5—C6—C7—C12148.06 (16)C10—C11—C15—C1459.45 (15)
O4—C6—C7—C1232.74 (16)C12—C11—C15—C1460.73 (16)
O5—C6—C7—C892.22 (18)C13—C14—C15—C1160.58 (16)
O4—C6—C7—C886.97 (13)C16—C14—C15—C1158.86 (15)
C6—C7—C8—C9177.12 (10)C8—C9—C16—C1461.11 (14)
C13—C7—C8—C959.50 (12)C10—C9—C16—C1459.30 (14)
C12—C7—C8—C960.50 (13)C13—C14—C16—C960.84 (13)
C7—C8—C9—C1659.84 (14)C15—C14—C16—C959.02 (14)
C7—C8—C9—C1060.31 (13)O3—C5—N1—O41.1 (2)
C16—C9—C10—C1159.98 (14)C4—C5—N1—O4177.63 (12)
C8—C9—C10—C1160.21 (14)O2—C2—O1—C11.0 (2)
C9—C10—C11—C1560.21 (14)C3—C2—O1—C1177.17 (13)
C9—C10—C11—C1260.05 (13)O5—C6—O4—N17.7 (2)
C10—C11—C12—C760.71 (13)C7—C6—O4—N1171.54 (11)
C15—C11—C12—C759.69 (15)C5—N1—O4—C681.34 (16)
C6—C7—C12—C11179.84 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.881.872.7250 (19)165
Symmetry code: (i) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H23NO5
Mr309.35
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)150
a, b, c (Å)15.7837 (5), 21.0715 (7), 9.5341 (3)
V3)3170.91 (18)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerBruker APEXII-FR591
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.851, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
22952, 4586, 2890
Rint0.036
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.132, 1.04
No. of reflections4586
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.26

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SAINT and XPREP (Bruker, 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX32 (Farrugia, 1999), POV-RAY (Cason, 2002) and WebLab ViewerPro (Molecular Simulations, 2000), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.881.872.7250 (19)164.7
Symmetry code: (i) x+1/2, y, z+1/2.
 

Acknowledgements

Support from the NHMRC-Project Grant 570844 (RC) and from the University of Sydney (2009 Bridging Support Grant (RC), co-funded postgraduate scholarship from the Faculty of Medicine (JL)) is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaert, F., Lamiot, J., Couturier, D., Roussel, D. & Ricart, G. (1984). Acta Cryst. C40, 1071–1072.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2003). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuscemi, S., Pace, A., Palumbo Piccionello, A., Pibiri, I., Vivona, N., Giorgi, G., Mazzanti, A. & Spinelli, D. (2006). J. Org. Chem. 71, 8106–8113.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCason, C. J. (2002). POV-RAY. Hallam Oaks Pty Ltd, Williamstown, Victoria, Australia.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGöttlicher, S. & Ochsenreiter, P. (1974). Chem. Ber. 107, 398–413.  Google Scholar
First citationGrassi, G., Cordaro, M., Bruno, G. & Nicolo, F. (2002). Helv. Chim. Acta, 85, 196–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationKongprakaiwoot, N., Noll, B. C. & Brown, S. N. (2008). Inorg. Chem. 47, 11902–11909.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, J., Clegg, J. K. & Codd, R. (2009). Acta Cryst. E65, o1740–o1741.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMasui, M., Ueshima, T., Ozaki, S., Fujiwara, T. & Tomita, K. (1983). Chem. Pharm. Bull. 31, 784–786.  CrossRef CAS Google Scholar
First citationMolecular Simulations (2000). WebLab ViewerPro. Accelrys Software Inc., San Diego, California, USA.  Google Scholar
First citationPelto, R. B. & Pratt, R. F. (2008). Biochemistry, 47, 12037–12046.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchraml, J., Sykora, J., Fiedler, P., Roithova, J., Mindl, J., Blechta, V., Cisarova, I. & Exner, O. (2004). Org. Biomol. Chem. 2, 2311–2314.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1742-o1743
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds