metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­(3,5-di-4-pyridyl-1H-1,2,4-triazolido)cadmium(II) dihydrate

aDepartment of Pharmacy, Shaoyang Medical College, Shaoyang, Hunan 422000, People's Republic of China
*Correspondence e-mail: liutilou2009@163.com

(Received 18 June 2009; accepted 28 June 2009; online 11 July 2009)

In the title compound, [Cd(C12H8N5)2(H2O)4]·2H2O, the CdII atom is located on an inversion center and is coordinated by the two N atoms [Cd—N = 2.278 (2) Å] and four O atoms [Cd—O = 2.304 (2)–2.322 (2) Å] in a distorted octa­hedral geometry. Inter­molecular O—H⋯O and O—H⋯N hydrogen bonds link the complex into a three-dimensional supra­molecular framework.

Related literature

For the properties of hydrogen bonds in biological systems, see: Deisenhofer & Michel (1989[Deisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149-2154.]). For extended supra­molecular structures, see: Beatty (2003[Beatty, A. M. (2003). Coord. Chem. Rev. 246, 131-143.]); Li et al. (2006[Li, F., Su, T.-H., Gao, W. & Cao, R. (2006). Eur. J. Inorg. Chem. pp. 1582-1587.]); Russell & Ward (1996[Russell, V. A. & Ward, M. D. (1996). Chem. Mater. 8, 1654-1666.]). For comparitive bond distances, see: Wen et al. (2005[Wen, L.-L., Dang, D.-B., Duan, C.-Y., Li, Y.-Z., Tian, Z.-F. & Meng, Q.-J. (2005). Inorg. Chem. 44, 7161-7164.]); Fu et al. (2007[Fu, Z., Gao, S. & Liu, S. (2007). Acta Cryst. C63, m459-m461.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C12H8N5)2(H2O)4]·2H2O

  • Mr = 664.97

  • Monoclinic, P 21 /c

  • a = 7.5030 (15) Å

  • b = 15.748 (3) Å

  • c = 12.009 (2) Å

  • β = 106.68 (3)°

  • V = 1359.2 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 293 K

  • 0.40 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.815, Tmax = 0.911

  • 9599 measured reflections

  • 3101 independent reflections

  • 2663 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.070

  • S = 1.01

  • 3101 reflections

  • 211 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N2i 0.84 (2) 1.95 (3) 2.768 (3) 164 (3)
O1—H1B⋯O3 0.85 (3) 1.95 (3) 2.786 (3) 169 (3)
O2—H2A⋯N3ii 0.85 (3) 1.98 (3) 2.829 (3) 171 (3)
O2—H2B⋯O3iii 0.85 (3) 1.95 (3) 2.758 (3) 161 (3)
O3—H3A⋯N4iv 0.85 (3) 2.06 (2) 2.895 (3) 171 (3)
O3—H3B⋯N5v 0.85 (3) 1.95 (2) 2.796 (3) 170 (3)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The hydrogen bond interaction plays a important role in some biological systems (Deisenhofer & Michel, 1989). Supramolecular assembly through hydrogen bonds has been extensively exploited to generate extended one-, two- and three-dimensional structures (Beatty et al., 2003; Li et al., 2006; Russell & Ward, 1996). As part of this ongoing work, We present here the synthesis and structural characterization of the title cadmium complex, [Cd(C12H8N5)2(H2O)4].2H2O, (I).

The molecule of the title complex, (Fig. 1), is centrosymmetric, so pairs of equivalent ligands lie trans to each other in a slightly distorted octahedral coordination geometry, cis angles deviating from 90° by less than 4°. with Cd—O bond length in the range 2.304 (2)–2.322 (2) Å and a Cd—N bond length of 2.278 (2) Å. These bond distances compare well with those in the literature (Wen et al., 2005; Fu et al., 2007). Molecules are linked by O—H···O and O—H···N hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For the properties of hydrogen bonds in biological systems, see: Deisenhofer & Michel (1989). For extended supramolecular structures, see: Beatty et al. (2003); Li et al. (2006); Russell & Ward (1996). For comparitive bond distances; Wen et al. (2005); Fu et al. (2007).

Experimental top

Cd(NO3)2.4H2O (0.5 mmol, 0.154 g), 1H-3,5-di(4-pyridyl)-1,2,4-triazole (0.5 mmol, 0.112 g), and water (12 ml) were placed in a 23-ml Teflon-lined Parr bomb. The bomb was heated at 453 K for 3 d. The colourless block-shapped crystals were filtered off and washed with water and acetone (yield 45%, based on Cd).

Refinement top

Hydrogen atoms of water molecules were located in a difference Fourier map and refined with distance restraints of O—H = 0.85 (2) Å and H···H = 1.39 (2) Å, and free isotropic U's. H atoms on C atoms were positoned geometrically and refined using a riding model, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) with the atom-numbering scheme and 30% displacement ellipsoids. Atoms with the suffix A are generated by the symmetry operation (-x, -y + 1, -z + 1).
[Figure 2] Fig. 2. The 3-D network of (I).
Tetraaquabis(3,5-di-4-pyridyl-1H-1,2,4-triazolido)cadmium(II) dihydrate top
Crystal data top
[Cd(C12H8N5)2(H2O)4]·2H2OF(000) = 676
Mr = 664.97Dx = 1.625 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2567 reflections
a = 7.5030 (15) Åθ = 2.6–27.3°
b = 15.748 (3) ŵ = 0.86 mm1
c = 12.009 (2) ÅT = 293 K
β = 106.68 (3)°Block, colorless
V = 1359.2 (5) Å30.40 × 0.20 × 0.12 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3101 independent reflections
Radiation source: fine-focus sealed tube2663 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 99
Tmin = 0.815, Tmax = 0.911k = 2020
9599 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0271P)2 + P]
where P = (Fo2 + 2Fc2)/3
3101 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.30 e Å3
9 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Cd(C12H8N5)2(H2O)4]·2H2OV = 1359.2 (5) Å3
Mr = 664.97Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.5030 (15) ŵ = 0.86 mm1
b = 15.748 (3) ÅT = 293 K
c = 12.009 (2) Å0.40 × 0.20 × 0.12 mm
β = 106.68 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3101 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2663 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.911Rint = 0.035
9599 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0309 restraints
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.30 e Å3
3101 reflectionsΔρmin = 0.47 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00000.50000.50000.02624 (8)
C10.0093 (4)0.67991 (14)0.3780 (2)0.0362 (6)
H10.03920.64760.31130.043*
C20.0355 (4)0.76513 (14)0.3660 (2)0.0350 (5)
H20.00380.78940.29230.042*
C30.1089 (3)0.81536 (13)0.46302 (19)0.0260 (5)
C40.1464 (4)0.77542 (14)0.5700 (2)0.0371 (6)
H40.19190.80650.63820.045*
C50.1161 (4)0.68949 (15)0.5749 (2)0.0380 (6)
H50.14300.66380.64760.046*
C60.1502 (3)0.90502 (13)0.45109 (18)0.0265 (5)
C70.2512 (3)1.02895 (14)0.4805 (2)0.0274 (5)
C80.3340 (3)1.10850 (13)0.53511 (19)0.0276 (5)
C90.3496 (4)1.17874 (16)0.4689 (2)0.0472 (7)
H90.31271.17540.38820.057*
C100.4202 (5)1.25321 (16)0.5236 (2)0.0515 (8)
H100.42851.29950.47720.062*
C110.4620 (4)1.19586 (16)0.7006 (2)0.0423 (6)
H110.50121.20100.78110.051*
C120.3919 (4)1.11875 (15)0.6541 (2)0.0376 (6)
H120.38371.07380.70270.045*
H1A0.081 (4)0.4477 (19)0.303 (2)0.065 (11)*
H2A0.251 (5)0.487 (2)0.722 (2)0.076 (12)*
H3A0.333 (4)0.5708 (17)0.2136 (15)0.057 (10)*
H1B0.225 (4)0.5023 (14)0.349 (3)0.050 (9)*
H2B0.371 (3)0.474 (2)0.656 (3)0.071 (11)*
H3B0.419 (4)0.6266 (12)0.301 (2)0.059 (9)*
N10.0504 (3)0.64121 (11)0.48107 (16)0.0309 (4)
N20.1075 (3)0.94209 (12)0.34725 (16)0.0338 (5)
N30.1745 (3)1.02282 (12)0.36636 (17)0.0351 (5)
N40.2401 (3)0.95673 (11)0.53920 (16)0.0269 (4)
N50.4772 (3)1.26344 (13)0.6379 (2)0.0413 (5)
O10.1563 (3)0.46448 (12)0.36541 (15)0.0358 (4)
O20.2657 (3)0.49379 (12)0.65460 (16)0.0416 (4)
O30.3821 (3)0.57563 (10)0.28626 (15)0.0349 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03522 (14)0.01796 (11)0.02429 (13)0.00424 (9)0.00655 (10)0.00067 (8)
C10.0537 (16)0.0256 (11)0.0261 (12)0.0094 (11)0.0063 (11)0.0044 (9)
C20.0516 (15)0.0269 (11)0.0240 (11)0.0059 (11)0.0067 (11)0.0028 (9)
C30.0296 (11)0.0208 (10)0.0275 (11)0.0013 (8)0.0079 (9)0.0014 (8)
C40.0577 (16)0.0233 (11)0.0255 (12)0.0090 (11)0.0042 (12)0.0027 (9)
C50.0596 (17)0.0254 (11)0.0249 (12)0.0073 (11)0.0057 (12)0.0031 (9)
C60.0331 (12)0.0206 (10)0.0241 (11)0.0013 (9)0.0056 (9)0.0011 (8)
C70.0333 (12)0.0205 (9)0.0295 (12)0.0024 (9)0.0106 (10)0.0006 (9)
C80.0302 (12)0.0204 (10)0.0314 (12)0.0019 (9)0.0075 (10)0.0006 (9)
C90.078 (2)0.0311 (13)0.0308 (13)0.0176 (13)0.0137 (14)0.0018 (10)
C100.084 (2)0.0276 (12)0.0446 (16)0.0188 (14)0.0214 (16)0.0009 (11)
C110.0532 (16)0.0364 (13)0.0303 (13)0.0066 (12)0.0010 (12)0.0046 (10)
C120.0496 (15)0.0260 (11)0.0327 (13)0.0042 (10)0.0046 (12)0.0042 (9)
N10.0435 (11)0.0199 (9)0.0278 (10)0.0049 (8)0.0077 (9)0.0005 (7)
N20.0487 (13)0.0241 (9)0.0258 (10)0.0087 (9)0.0066 (9)0.0016 (7)
N30.0523 (13)0.0239 (9)0.0265 (10)0.0089 (9)0.0073 (10)0.0020 (8)
N40.0348 (10)0.0192 (9)0.0261 (10)0.0021 (7)0.0078 (8)0.0005 (7)
N50.0488 (13)0.0280 (10)0.0458 (13)0.0092 (9)0.0112 (11)0.0087 (9)
O10.0405 (10)0.0387 (10)0.0295 (9)0.0055 (8)0.0120 (8)0.0026 (8)
O20.0349 (10)0.0577 (12)0.0288 (9)0.0058 (9)0.0035 (8)0.0038 (8)
O30.0458 (10)0.0258 (8)0.0299 (9)0.0037 (7)0.0060 (8)0.0015 (7)
Geometric parameters (Å, º) top
Cd1—N1i2.278 (2)C7—N41.353 (3)
Cd1—N12.278 (2)C7—C81.467 (3)
Cd1—O22.304 (2)C8—C121.379 (3)
Cd1—O2i2.304 (2)C8—C91.386 (3)
Cd1—O1i2.322 (2)C9—C101.373 (3)
Cd1—O12.322 (2)C9—H90.9300
C1—N11.334 (3)C10—N51.325 (3)
C1—C21.370 (3)C10—H100.9300
C1—H10.9300C11—N51.327 (3)
C2—C31.385 (3)C11—C121.376 (3)
C2—H20.9300C11—H110.9300
C3—C41.385 (3)C12—H120.9300
C3—C61.461 (3)N2—N31.362 (3)
C4—C51.376 (3)O1—H1A0.844 (17)
C4—H40.9300O1—H1B0.845 (17)
C5—N11.331 (3)O2—H2A0.857 (17)
C5—H50.9300O2—H2B0.847 (17)
C6—N21.330 (3)O3—H3A0.848 (16)
C6—N41.352 (3)O3—H3B0.850 (17)
C7—N31.329 (3)
N1i—Cd1—N1180.0N3—C7—N4113.8 (2)
N1i—Cd1—O290.47 (7)N3—C7—C8121.7 (2)
N1—Cd1—O289.53 (7)N4—C7—C8124.5 (2)
N1i—Cd1—O2i89.53 (7)C12—C8—C9116.6 (2)
N1—Cd1—O2i90.47 (7)C12—C8—C7122.1 (2)
O2—Cd1—O2i180.0C9—C8—C7121.3 (2)
N1i—Cd1—O1i91.96 (7)C10—C9—C8119.5 (2)
N1—Cd1—O1i88.04 (7)C10—C9—H9120.3
O2—Cd1—O1i86.71 (7)C8—C9—H9120.3
O2i—Cd1—O1i93.29 (7)N5—C10—C9124.3 (2)
N1i—Cd1—O188.04 (7)N5—C10—H10117.8
N1—Cd1—O191.96 (7)C9—C10—H10117.8
O2—Cd1—O193.29 (7)N5—C11—C12124.3 (2)
O2i—Cd1—O186.71 (7)N5—C11—H11117.9
O1i—Cd1—O1180.0C12—C11—H11117.9
N1—C1—C2122.9 (2)C11—C12—C8119.6 (2)
N1—C1—H1118.5C11—C12—H12120.2
C2—C1—H1118.5C8—C12—H12120.2
C1—C2—C3120.4 (2)C5—N1—C1117.07 (19)
C1—C2—H2119.8C5—N1—Cd1120.33 (15)
C3—C2—H2119.8C1—N1—Cd1122.54 (15)
C2—C3—C4116.5 (2)C6—N2—N3105.89 (18)
C2—C3—C6120.91 (19)C7—N3—N2105.73 (18)
C4—C3—C6122.5 (2)C6—N4—C7100.94 (18)
C5—C4—C3119.6 (2)C10—N5—C11115.8 (2)
C5—C4—H4120.2Cd1—O1—H1A111 (2)
C3—C4—H4120.2Cd1—O1—H1B117 (2)
N1—C5—C4123.5 (2)H1A—O1—H1B108 (2)
N1—C5—H5118.3Cd1—O2—H2A117 (2)
C4—C5—H5118.3Cd1—O2—H2B128 (2)
N2—C6—N4113.65 (19)H2A—O2—H2B108 (2)
N2—C6—C3121.01 (19)H3A—O3—H3B108 (2)
N4—C6—C3125.27 (19)
N1—C1—C2—C30.6 (4)C2—C1—N1—C51.3 (4)
C1—C2—C3—C42.3 (4)C2—C1—N1—Cd1178.6 (2)
C1—C2—C3—C6175.5 (2)O2—Cd1—N1—C538.2 (2)
C2—C3—C4—C52.2 (4)O2i—Cd1—N1—C5141.8 (2)
C6—C3—C4—C5175.5 (2)O1i—Cd1—N1—C548.5 (2)
C3—C4—C5—N10.4 (4)O1—Cd1—N1—C5131.5 (2)
C2—C3—C6—N24.4 (3)O2—Cd1—N1—C1144.6 (2)
C4—C3—C6—N2178.0 (2)O2i—Cd1—N1—C135.4 (2)
C2—C3—C6—N4172.4 (2)O1i—Cd1—N1—C1128.6 (2)
C4—C3—C6—N45.2 (4)O1—Cd1—N1—C151.4 (2)
N3—C7—C8—C12171.4 (2)N4—C6—N2—N30.9 (3)
N4—C7—C8—C126.7 (4)C3—C6—N2—N3176.3 (2)
N3—C7—C8—C95.4 (4)N4—C7—N3—N20.3 (3)
N4—C7—C8—C9176.4 (2)C8—C7—N3—N2178.0 (2)
C12—C8—C9—C100.0 (4)C6—N2—N3—C70.6 (3)
C7—C8—C9—C10177.0 (3)N2—C6—N4—C70.7 (3)
C8—C9—C10—N50.4 (5)C3—C6—N4—C7176.3 (2)
N5—C11—C12—C80.6 (4)N3—C7—N4—C60.2 (3)
C9—C8—C12—C110.4 (4)C8—C7—N4—C6178.5 (2)
C7—C8—C12—C11177.5 (2)C9—C10—N5—C110.3 (5)
C4—C5—N1—C11.4 (4)C12—C11—N5—C100.2 (4)
C4—C5—N1—Cd1178.7 (2)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N2ii0.84 (2)1.95 (3)2.768 (3)164 (3)
O1—H1B···O30.85 (3)1.95 (3)2.786 (3)169 (3)
O2—H2A···N3iii0.85 (3)1.98 (3)2.829 (3)171 (3)
O2—H2B···O3iv0.85 (3)1.95 (3)2.758 (3)161 (3)
O3—H3A···N4v0.85 (3)2.06 (2)2.895 (3)171 (3)
O3—H3B···N5vi0.85 (3)1.95 (2)2.796 (3)170 (3)
Symmetry codes: (ii) x, y1/2, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x+1, y+1, z+1; (v) x, y+3/2, z1/2; (vi) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C12H8N5)2(H2O)4]·2H2O
Mr664.97
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.5030 (15), 15.748 (3), 12.009 (2)
β (°) 106.68 (3)
V3)1359.2 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.40 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.815, 0.911
No. of measured, independent and
observed [I > 2σ(I)] reflections
9599, 3101, 2663
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.070, 1.01
No. of reflections3101
No. of parameters211
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.47

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N2i0.84 (2)1.95 (3)2.768 (3)164 (3)
O1—H1B···O30.85 (3)1.95 (3)2.786 (3)169 (3)
O2—H2A···N3ii0.85 (3)1.98 (3)2.829 (3)171 (3)
O2—H2B···O3iii0.85 (3)1.95 (3)2.758 (3)161 (3)
O3—H3A···N4iv0.85 (3)2.06 (2)2.895 (3)171 (3)
O3—H3B···N5v0.85 (3)1.95 (2)2.796 (3)170 (3)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x, y+3/2, z1/2; (v) x+1, y+2, z+1.
 

Acknowledgements

We gratefully acknowledge the Science and Techology Foundation of Shaoyang, Hunan, China and the Foundation of Shaoyang Medical College, China.

References

First citationBeatty, A. M. (2003). Coord. Chem. Rev. 246, 131–143.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149–2154.  CAS PubMed Web of Science Google Scholar
First citationFu, Z., Gao, S. & Liu, S. (2007). Acta Cryst. C63, m459–m461.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, F., Su, T.-H., Gao, W. & Cao, R. (2006). Eur. J. Inorg. Chem. pp. 1582–1587.  Web of Science CSD CrossRef Google Scholar
First citationRussell, V. A. & Ward, M. D. (1996). Chem. Mater. 8, 1654–1666.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, L.-L., Dang, D.-B., Duan, C.-Y., Li, Y.-Z., Tian, Z.-F. & Meng, Q.-J. (2005). Inorg. Chem. 44, 7161–7164.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds