organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(4-Hy­droxy­benzyl­­idene)aceto­hydrazide monohydrate

aDepartment of Chemical Engineering, Hangzhou Vocational and Technical College, Hangzhou 310018, People's Republic of China, and bResearch Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: zgdhxc@126.com

(Received 7 July 2009; accepted 22 July 2009; online 29 July 2009)

In the title compound, C9H10N2O2·H2O, the mol­ecular skeleton of the acetohydrazide mol­ecule is nearly planar [within 0.014 (1) Å]. The mol­ecule adopts a trans configuration with respect to the C=N bond, while the side chain is slightly twisted away from the attached ring, forming a dihedral angle of 9.975 (8)°. The crystal packing exhibits a three-dimensional network composed from alternating acetohydrazide mol­ecules and uncoordinated water mol­ecules, which inter­act via N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds. A C—H⋯π inter­action is also present.

Related literature

For general background to the analytical applications of Schiff bases, see: Ciemerman et al. (1997[Ciemerman, Z., Galic, N. & Bosner, B. (1997). Anal Chim. Acta, 343, 145-153.]). For their mild bacteriostatic activity and potential use as oral iron-chelating drugs for the treatment of genetic disorders such as thalassemia, see: Offe et al. (1952[Offe, H. A., Siefen, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 446-447.]); Richardson et al. (1988[Richardson, D., Baker, E., Ponka, P., Wilairat, P., Vitolo, M. L. & Webb, J. (1988). Thalassemia: Pathophysiology and Management, Part B, p. 81. New York: Alan R. Liss.]). For a related structure, see: Li & Jian (2008[Li, Y.-F. & Jian, F.-F. (2008). Acta Cryst. E64, o2409.]); Tamboura et al. (2009[Tamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160-m161.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10N2O2·H2O

  • Mr = 196.21

  • Monoclinic, P 21 /n

  • a = 8.352 (2) Å

  • b = 10.146 (3) Å

  • c = 12.328 (3) Å

  • β = 105.353 (3)°

  • V = 1007.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 223 K

  • 0.23 × 0.21 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.976

  • 4820 measured reflections

  • 1764 independent reflections

  • 1569 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.100

  • S = 1.06

  • 1764 reflections

  • 147 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 2.00 2.7477 (15) 152
N2—H2A⋯O1Wii 0.86 1.96 2.8060 (17) 166
O1W—H1F⋯O2 0.88 (2) 1.92 (2) 2.7600 (17) 159 (2)
O1W—H1E⋯O1iii 0.85 (2) 2.01 (2) 2.8241 (17) 161 (2)
O1—H1⋯N1i 0.82 2.54 3.1864 (16) 137
C9—H9BCg1iv 0.96 2.74 3.519 (2) 138
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) x-1, y+1, z; (iv) -x+1, -y, -z+1. Cg1 is the centroid of the C1–C6 ring.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have attracted much attention due to their possibility of analytical application (Ciemerman et al., 1997). They are also important ligands, which have been reported to have mild bacteriostatic activity and potential oral iron-chelating drugs for genetic disorders such as thalassemia (Offe et al., 1952, Richardson et al., 1988). Metal complexes based on Schiff bases have received considerable attention because they can be utilized as model compounds of active centres in various complexes (Tamboura et al., 2009). We report here the crystal structure of the title compound (Fig. 1).

In the title compound,C9H10N2O2 .H2O, (I) the molecular skeleton is nearly planar. The molecule adopts a trans configuration with respect to the CN bond, while the side chain is slightly twisted away from the attached ring. The dihedral angle between these two essentially planar units is 9.975 (8)°. Bond lengths and angles are comparable to those observed for N'-[1-(4-methoxyphenyl)ethylidene]acetohydrazide (Li et al., 2008).

The crystal packing exhibits a three-dimensional network composed from alternating molecules of (I) and crystalline water, which interact via N-H···O, O-H···O and O-H···N hydrogen bonds. In addition, a intermolecular C—H···π interactions is observed (Table 1 and Fig 2).

Related literature top

For general background to the analytical applications of Schiff bases, see: Ciemerman et al. (1997). For their mild bacteriostatic activity and potential use asoral iron-chelating drugs for the treatment of genetic disorders such as thalassemia, see: Offe et al. (1952); Richardson et al. (1988). For a related structure, see: Li & Jian (2008); Tamboura et al. (2009). Cg1 is the centroid of the C1–C6 ring.

Experimental top

4-Hydroxybenzaldehyde (1.22 g, 0.01 mol) and acetohydrazide (0.74 g, 0.01 mol) were dissolved in stirred methanol (20 ml) and left for 2.5 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 95% yield. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 435–437 K).

Refinement top

H atoms of the water molecule were located in a difference map and were refined with O-H distances restrained to 0.84 (2) Å and 0.88 (2) Å, Other H atoms were positioned geometrically (N-H = 0.86 Å , O-H=0.82Å and C-H = 0.93 or 0.96Å) and refined using a riding model, with Uiso(H) =1.2Ueq(C,N) and 1.5Ueq(Cmethyl). In the absence of significant anomalous scattering effects, Friedel pairs were averaged.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 40% probability level. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. Crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
N'-(4-Hydroxybenzylidene)acetohydrazide monohydrate top
Crystal data top
C9H10N2O2·H2OF(000) = 416
Mr = 196.21Dx = 1.294 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1764 reflections
a = 8.352 (2) Åθ = 2.6–25.0°
b = 10.146 (3) ŵ = 0.10 mm1
c = 12.328 (3) ÅT = 223 K
β = 105.353 (3)°Block, colourless
V = 1007.3 (5) Å30.23 × 0.21 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1764 independent reflections
Radiation source: fine-focus sealed tube1569 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 99
Tmin = 0.969, Tmax = 0.976k = 1012
4820 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.2585P]
where P = (Fo2 + 2Fc2)/3
1764 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C9H10N2O2·H2OV = 1007.3 (5) Å3
Mr = 196.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.352 (2) ŵ = 0.10 mm1
b = 10.146 (3) ÅT = 223 K
c = 12.328 (3) Å0.23 × 0.21 × 0.20 mm
β = 105.353 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1764 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1569 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.976Rint = 0.015
4820 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.18 e Å3
1764 reflectionsΔρmin = 0.22 e Å3
147 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.96500 (16)0.24160 (13)0.32475 (11)0.0320 (3)
C20.86072 (18)0.34460 (14)0.27501 (11)0.0376 (3)
H20.83810.35870.19790.046 (4)*
C30.79116 (17)0.42545 (14)0.33983 (12)0.0370 (3)
H30.72210.49410.30600.046 (4)*
C40.82307 (16)0.40561 (13)0.45606 (11)0.0319 (3)
C50.92557 (17)0.30058 (14)0.50398 (11)0.0348 (5)0.998 (6)
H50.94730.28530.58090.040 (4)*
C60.99522 (17)0.21901 (13)0.43931 (11)0.0352 (3)
H61.06230.14900.47250.041 (4)*
C70.75676 (16)0.49358 (13)0.52741 (11)0.0337 (3)
H70.78520.47930.60470.041 (4)*
C80.51412 (16)0.77123 (13)0.52939 (11)0.0321 (3)
C90.47333 (19)0.85289 (14)0.61982 (12)0.0408 (4)
H9A0.52760.81650.69210.094 (7)*
H9B0.35540.85280.61000.104 (8)*
H9C0.51090.94160.61530.086 (7)*
N10.66075 (13)0.58964 (11)0.48641 (9)0.0333 (3)
N20.61346 (14)0.66803 (11)0.56438 (9)0.0329 (3)
H2A0.64790.65040.63500.045 (4)*
O11.04051 (13)0.16176 (10)0.26415 (8)0.0421 (3)
H11.01350.18440.19790.080 (7)*
O20.45976 (13)0.79883 (10)0.42813 (8)0.0436 (3)
O1W0.17157 (17)0.90361 (12)0.29134 (10)0.0527 (3)
H1E0.146 (3)0.984 (2)0.2989 (18)0.075 (7)*
H1F0.260 (3)0.886 (2)0.3465 (19)0.078 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0344 (7)0.0292 (7)0.0343 (7)0.0020 (5)0.0123 (6)0.0026 (5)
C20.0447 (8)0.0401 (8)0.0294 (7)0.0043 (6)0.0122 (6)0.0036 (6)
C30.0396 (7)0.0355 (7)0.0367 (7)0.0061 (6)0.0117 (6)0.0040 (6)
C40.0313 (7)0.0317 (7)0.0338 (7)0.0048 (5)0.0106 (5)0.0023 (5)
C50.0381 (8)0.0378 (9)0.0289 (7)0.0024 (6)0.0096 (6)0.0011 (6)
C60.0372 (7)0.0315 (7)0.0366 (7)0.0026 (6)0.0091 (6)0.0035 (6)
C70.0343 (7)0.0361 (7)0.0314 (7)0.0043 (6)0.0101 (5)0.0026 (5)
C80.0319 (7)0.0313 (7)0.0350 (7)0.0061 (5)0.0121 (6)0.0004 (5)
C90.0474 (9)0.0345 (8)0.0435 (8)0.0027 (6)0.0173 (7)0.0066 (6)
N10.0350 (6)0.0347 (6)0.0324 (6)0.0024 (5)0.0129 (5)0.0048 (5)
N20.0363 (6)0.0352 (6)0.0281 (6)0.0004 (5)0.0103 (5)0.0035 (4)
O10.0545 (7)0.0391 (6)0.0353 (6)0.0119 (5)0.0164 (5)0.0007 (4)
O20.0534 (6)0.0448 (6)0.0349 (5)0.0090 (5)0.0155 (5)0.0055 (4)
O1W0.0697 (8)0.0430 (7)0.0384 (6)0.0116 (6)0.0019 (6)0.0018 (5)
Geometric parameters (Å, º) top
C1—O11.3644 (16)C7—H70.9300
C1—C61.3864 (19)C8—O21.2421 (17)
C1—C21.3941 (19)C8—O21.2421 (17)
C2—C31.377 (2)C8—N21.3346 (18)
C2—H20.9300C8—C91.4988 (19)
C3—C41.4009 (19)C9—H9A0.9600
C3—H30.9300C9—H9B0.9600
C4—C51.3962 (19)C9—H9C0.9600
C4—C71.4611 (19)N1—N21.3832 (16)
C5—C61.380 (2)N2—H2A0.8600
C5—H50.9300O1—H10.8200
C6—H60.9300O1W—H1E0.85 (2)
C7—N11.2782 (18)O1W—H1F0.88 (2)
O1—C1—C6118.28 (12)N1—C7—H7119.1
O1—C1—C2121.98 (12)C4—C7—H7119.1
C6—C1—C2119.74 (12)O2—C8—N2122.15 (12)
C3—C2—C1120.12 (12)O2—C8—N2122.15 (12)
C3—C2—H2119.9O2—C8—C9121.90 (13)
C1—C2—H2119.9O2—C8—C9121.90 (13)
C2—C3—C4120.85 (13)N2—C8—C9115.95 (12)
C2—C3—H3119.6C8—C9—H9A109.5
C4—C3—H3119.6C8—C9—H9B109.5
C5—C4—C3118.15 (12)H9A—C9—H9B109.5
C5—C4—C7119.94 (12)C8—C9—H9C109.5
C3—C4—C7121.88 (12)H9A—C9—H9C109.5
C6—C5—C4121.22 (12)H9B—C9—H9C109.5
C6—C5—H5119.4C7—N1—N2115.36 (11)
C4—C5—H5119.4C8—N2—N1119.60 (11)
C5—C6—C1119.90 (13)C8—N2—H2A120.2
C5—C6—H6120.1N1—N2—H2A120.2
C1—C6—H6120.1C1—O1—H1109.5
N1—C7—C4121.72 (12)H1E—O1W—H1F107 (2)
O1—C1—C2—C3177.94 (13)C2—C1—C6—C51.7 (2)
C6—C1—C2—C31.5 (2)C5—C4—C7—N1179.03 (12)
C1—C2—C3—C40.2 (2)C3—C4—C7—N13.0 (2)
C2—C3—C4—C50.8 (2)C4—C7—N1—N2177.28 (11)
C2—C3—C4—C7177.21 (13)O2—C8—N2—N11.12 (19)
C3—C4—C5—C60.6 (2)O2—C8—N2—N11.12 (19)
C7—C4—C5—C6177.44 (12)C9—C8—N2—N1178.27 (11)
C4—C5—C6—C10.6 (2)C7—N1—N2—C8179.57 (12)
O1—C1—C6—C5177.77 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.822.002.7477 (15)152
N2—H2A···O1Wii0.861.962.8060 (17)166
O1W—H1F···O20.88 (2)1.92 (2)2.7600 (17)159 (2)
O1W—H1E···O1iii0.85 (2)2.01 (2)2.8241 (17)161 (2)
O1—H1···N1i0.822.543.1864 (16)137
C9—H9B···Cg1iv0.962.743.519 (2)138
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x1, y+1, z; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC9H10N2O2·H2O
Mr196.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)223
a, b, c (Å)8.352 (2), 10.146 (3), 12.328 (3)
β (°) 105.353 (3)
V3)1007.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.23 × 0.21 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.969, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
4820, 1764, 1569
Rint0.015
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.06
No. of reflections1764
No. of parameters147
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.22

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.822.002.7477 (15)151.5
N2—H2A···O1Wii0.861.962.8060 (17)166.3
O1W—H1F···O20.88 (2)1.92 (2)2.7600 (17)159 (2)
O1W—H1E···O1iii0.85 (2)2.01 (2)2.8241 (17)161 (2)
O1—H1···N1i0.822.543.1864 (16)136.5
C9—H9B···Cg1iv0.962.743.519 (2)138.00
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x1, y+1, z; (iv) x+1, y, z+1.
 

Acknowledgements

The authors thank the Science and Technology Project of Zhejiang Province (grant No. 2007 F70077) for financial support.

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCiemerman, Z., Galic, N. & Bosner, B. (1997). Anal Chim. Acta, 343, 145–153.  Google Scholar
First citationLi, Y.-F. & Jian, F.-F. (2008). Acta Cryst. E64, o2409.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOffe, H. A., Siefen, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 446–447.  Google Scholar
First citationRichardson, D., Baker, E., Ponka, P., Wilairat, P., Vitolo, M. L. & Webb, J. (1988). Thalassemia: Pathophysiology and Management, Part B, p. 81. New York: Alan R. Liss.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160–m161.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds