organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-N-(2-chloro­phen­yl)acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and cFaculty of Integrated Arts and Sciences, Tokushima University, Minamijosanjima-cho, Tokushima 770-8502, Japan
*Correspondence e-mail: gowdabt@yahoo.com

(Received 7 July 2009; accepted 21 July 2009; online 25 July 2009)

The conformation of the N—H bond in the structure of the title compound, C8H7BrClNO, is syn to the 2-chloro substituent in the aniline ring and anti to both the C=O and C—Br bonds in the side chain, similar to that observed in 2-chloro-N-(2-chloro­phen­yl)acetamide. In the crystal, mol­ecules are linked into chains along the a axis by N—H⋯O hydrogen bonds. These chains are in turn linked into pairs, in the form of columns, through much weaker C—H⋯Cl and Br⋯Br [4.3027 (3) Å] inter­actions.

Related literature

For the preparation of the compound, see: Gowda et al. (2003[Gowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801-806.]). For our studies of the effect of ring and side-chain substituents on the structures of N-aromatic amides, see: Gowda et al. (2007a[Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o4611.],b[Gowda, B. T., Svoboda, I. & Fuess, H. (2007b). Acta Cryst. E63, o3266.],c[Gowda, B. T., Svoboda, I. & Fuess, H. (2007c). Acta Cryst. E63, o3267.])

[Scheme 1]

Experimental

Crystal data
  • C8H7BrClNO

  • Mr = 248.51

  • Monoclinic, P 21 /n

  • a = 9.9781 (9) Å

  • b = 4.7161 (5) Å

  • c = 20.028 (2) Å

  • β = 102.194 (9)°

  • V = 921.21 (16) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 8.36 mm−1

  • T = 299 K

  • 0.55 × 0.20 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.071, Tmax = 0.286

  • 2349 measured reflections

  • 1650 independent reflections

  • 1482 reflections with I > 2σ(I)

  • Rint = 0.023

  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.118

  • S = 1.11

  • 1650 reflections

  • 113 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.88 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.839 (19) 2.05 (2) 2.852 (4) 160 (4)
C8—H8B⋯Cl1ii 0.97 3.09 3.765 (5) 128
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y, -z+2.

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the effect of the ring and the side chain substituents on the structures of N-aromatic amides (Gowda et al., 2007a,b,c), in the present work we report the structure of 2-bromo-N-(2-chlorophenyl)acetamide (I). The conformation of the N—H bond in the structure is syn to the ortho-Cl substituent in the aniline ring and anti to both the C=O and C—Br bonds in the side chain (Fig. 1), similar to that observed in 2-chloro-N-(2-chlorophenyl)acetamide (Gowda et al., 2007a) and other side chain substituted aromatic amides.

The packing diagram in Fig. 2 shows the formation of molecular chains in the direction of the a axis through the N1—H1N···O1 H-bonds (Table 1). These chains are in turn linked into pairs, in the form of strips, through much weaker C—H···Cl and Br···Br interactions.

Related literature top

For preparation of the compound, see: Gowda et al. (2003). For our study of the effect of ring and side-chain substituents on the structures of N-aromatic amides, see: Gowda et al. (2007a,b,c)

Experimental top

The title compound was prepared from 2-chloroaniline and bromoacetylchloride according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point, and further characterized by recording its infrared spectra (Gowda et al., 2003). Single crystals of the title compound used for X-ray diffraction studies were obtained by slow evaporation of an ethanolic solution at room temperature.

Refinement top

The N-bound H atom was located in a difference map and refined with a restrained geometry (N-H= 0.86 (2) Å). The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93–0.97 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of (I) showing chains, with hydrogen bonds shown as dashed lines. The unit cell is shown as "broken" along the c direction, for completeness.
2-Bromo-N-(2-chlorophenyl)acetamide top
Crystal data top
C8H7BrClNOF(000) = 488
Mr = 248.51Dx = 1.792 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 9.9781 (9) Åθ = 7.3–22.5°
b = 4.7161 (5) ŵ = 8.36 mm1
c = 20.028 (2) ÅT = 299 K
β = 102.194 (9)°Rod, colourless
V = 921.21 (16) Å30.55 × 0.20 × 0.15 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1482 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 67.0°, θmin = 4.5°
ω/2θ scansh = 113
Absorption correction: ψ scan
(North et al., 1968)
k = 50
Tmin = 0.071, Tmax = 0.286l = 2323
2349 measured reflections3 standard reflections every 120 min
1650 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0557P)2 + 1.2453P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.002
1650 reflectionsΔρmax = 0.87 e Å3
113 parametersΔρmin = 0.88 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0137 (8)
Crystal data top
C8H7BrClNOV = 921.21 (16) Å3
Mr = 248.51Z = 4
Monoclinic, P21/nCu Kα radiation
a = 9.9781 (9) ŵ = 8.36 mm1
b = 4.7161 (5) ÅT = 299 K
c = 20.028 (2) Å0.55 × 0.20 × 0.15 mm
β = 102.194 (9)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1482 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.023
Tmin = 0.071, Tmax = 0.2863 standard reflections every 120 min
2349 measured reflections intensity decay: 1.0%
1650 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.87 e Å3
1650 reflectionsΔρmin = 0.88 e Å3
113 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2297 (3)0.0215 (7)1.03419 (17)0.0397 (7)
C20.3291 (3)0.0895 (7)1.08624 (18)0.0425 (8)
C30.3353 (4)0.0151 (10)1.15353 (19)0.0551 (9)
H30.40190.09411.18810.066*
C40.2433 (5)0.1749 (10)1.1691 (2)0.0629 (11)
H40.24820.22791.21430.075*
C50.1426 (5)0.2888 (9)1.1178 (2)0.0591 (10)
H50.07950.41701.12850.071*
C60.1361 (4)0.2117 (9)1.0508 (2)0.0501 (9)
H60.06830.28811.01650.060*
C70.2077 (4)0.1136 (7)0.91258 (19)0.0446 (8)
C80.2212 (5)0.0244 (9)0.84652 (19)0.0564 (10)
H8A0.21360.22840.85070.068*
H8B0.31110.01700.83780.068*
N10.2235 (3)0.0623 (6)0.96571 (15)0.0421 (6)
H1N0.234 (4)0.233 (5)0.957 (2)0.050*
O10.1903 (4)0.3694 (5)0.91641 (16)0.0658 (8)
Cl10.44859 (10)0.3266 (2)1.06732 (5)0.0583 (3)
Br10.08344 (5)0.10591 (13)0.77113 (2)0.0742 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0435 (16)0.0345 (16)0.0401 (17)0.0053 (14)0.0065 (13)0.0034 (14)
C20.0444 (17)0.0402 (17)0.0426 (18)0.0046 (14)0.0083 (14)0.0022 (14)
C30.067 (2)0.057 (2)0.0396 (19)0.0064 (19)0.0055 (17)0.0013 (18)
C40.080 (3)0.067 (3)0.047 (2)0.010 (2)0.025 (2)0.013 (2)
C50.065 (2)0.055 (2)0.064 (2)0.002 (2)0.029 (2)0.013 (2)
C60.0485 (19)0.048 (2)0.054 (2)0.0036 (16)0.0099 (16)0.0042 (18)
C70.0530 (19)0.0367 (18)0.0393 (18)0.0005 (14)0.0010 (14)0.0023 (14)
C80.076 (3)0.051 (2)0.0387 (19)0.009 (2)0.0048 (17)0.0008 (18)
N10.0542 (16)0.0332 (14)0.0353 (15)0.0038 (13)0.0016 (12)0.0039 (12)
O10.108 (2)0.0331 (14)0.0523 (17)0.0082 (14)0.0087 (16)0.0002 (11)
Cl10.0509 (5)0.0628 (6)0.0573 (6)0.0146 (4)0.0025 (4)0.0032 (5)
Br10.0792 (4)0.0936 (5)0.0427 (3)0.0058 (3)0.0035 (2)0.0111 (2)
Geometric parameters (Å, º) top
C1—C21.381 (5)C5—H50.9300
C1—C61.385 (5)C6—H60.9300
C1—N11.416 (4)C7—O11.223 (4)
C2—C31.381 (5)C7—N11.332 (5)
C2—Cl11.734 (4)C7—C81.506 (5)
C3—C41.365 (6)C8—Br11.916 (4)
C3—H30.9300C8—H8A0.9700
C4—C51.385 (7)C8—H8B0.9700
C4—H40.9300N1—H1N0.839 (19)
C5—C61.377 (6)
C2—C1—C6118.5 (3)C5—C6—C1120.6 (4)
C2—C1—N1120.2 (3)C5—C6—H6119.7
C6—C1—N1121.3 (3)C1—C6—H6119.7
C1—C2—C3121.2 (3)O1—C7—N1124.0 (4)
C1—C2—Cl1119.8 (3)O1—C7—C8121.4 (4)
C3—C2—Cl1119.1 (3)N1—C7—C8114.5 (3)
C4—C3—C2119.7 (4)C7—C8—Br1111.8 (3)
C4—C3—H3120.1C7—C8—H8A109.3
C2—C3—H3120.1Br1—C8—H8A109.3
C3—C4—C5120.1 (4)C7—C8—H8B109.3
C3—C4—H4119.9Br1—C8—H8B109.3
C5—C4—H4119.9H8A—C8—H8B107.9
C6—C5—C4119.8 (4)C7—N1—C1125.0 (3)
C6—C5—H5120.1C7—N1—H1N115 (3)
C4—C5—H5120.1C1—N1—H1N120 (3)
C6—C1—C2—C30.4 (5)C2—C1—C6—C50.3 (6)
N1—C1—C2—C3178.7 (3)N1—C1—C6—C5179.3 (4)
C6—C1—C2—Cl1179.6 (3)O1—C7—C8—Br146.2 (5)
N1—C1—C2—Cl11.3 (4)N1—C7—C8—Br1137.2 (3)
C1—C2—C3—C41.1 (6)O1—C7—N1—C13.4 (6)
Cl1—C2—C3—C4178.9 (3)C8—C7—N1—C1173.1 (3)
C2—C3—C4—C51.1 (7)C2—C1—N1—C7134.5 (4)
C3—C4—C5—C60.5 (7)C6—C1—N1—C746.5 (5)
C4—C5—C6—C10.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (2)2.05 (2)2.852 (4)160 (4)
C8—H8B···Cl1ii0.973.093.765 (5)128
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC8H7BrClNO
Mr248.51
Crystal system, space groupMonoclinic, P21/n
Temperature (K)299
a, b, c (Å)9.9781 (9), 4.7161 (5), 20.028 (2)
β (°) 102.194 (9)
V3)921.21 (16)
Z4
Radiation typeCu Kα
µ (mm1)8.36
Crystal size (mm)0.55 × 0.20 × 0.15
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.071, 0.286
No. of measured, independent and
observed [I > 2σ(I)] reflections
2349, 1650, 1482
Rint0.023
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.118, 1.11
No. of reflections1650
No. of parameters113
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.87, 0.88

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.839 (19)2.05 (2)2.852 (4)160 (4)
C8—H8B···Cl1ii0.973.093.765 (5)127.6
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+2.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o4611.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Svoboda, I. & Fuess, H. (2007b). Acta Cryst. E63, o3266.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Svoboda, I. & Fuess, H. (2007c). Acta Cryst. E63, o3267.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801–806.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds