organic compounds
1-Chloroacetyl-2,6-bis(3-fluorophenyl)piperidin-4-one
aDivision of Image Science and Information Engineering, Pukyong National University, Busan 608-739, Republic of Korea, and bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: ytjeong@pknu.ac.kr
In the title compound C19H16ClF2NO2, the piperidone ring adopts a twist-boat conformation with the two out-of-plane atoms deviating by 0.544 (1) and 0.511 (1) Å from the plane through the remaining atoms in the ring. Sterically favoured non-H-atom C⋯O intermolecular contacts are observed in the structure, within a 3.00 Å range. The crystal packing is stabilized by C—H⋯O and C—H⋯F hydrogen bonds and an intermolecular π–π interaction [centroid-centroid separation of 3.783 (1) Å]. Alternating C—H⋯O and C—H⋯F intermolecular interactions generate chains running along the a axis, while a centrosymmetric R22(16) ring involving C—H⋯O interactions is formed centred at (1/2, 1/2, 0).
Related literature
For background to the biological activity of piperidines and piperidones and their derivatives, see: Richardo et al. (1979); Schneider (1996); Mukhtar & Wright (2005); Fleet et al. (1990); Winkler & Holan (1989); Aridoss et al. (2007a, 2008, 2009a). For related structures, see: Gayathri et al. (2008); Ramachandran et al. (2008); Aridoss et al. (2009b). For the synthesis and stereochemistry, see: Krishnapillay et al. (2000); Aridoss et al. (2007b). For ring see: Cremer & Pople (1975); Nardelli (1983).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).
Supporting information
10.1107/S1600536809028529/bg2281sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809028529/bg2281Isup2.hkl
The title compound was obtained by adopting our earlier method (Aridoss et al. 2007a) with slight modification. To a solution of 2,6-bis(3-fluorophenyl)- piperidin-4-one (1 equiv.) and NEt3 (1.5 equiv.) in freshly distilled benzene, chloroacetyl chloride (1 equiv.) in benzene was added drop wise. Stirring was continued until the completion of reaction. Later, it was poured into water and extracted with ethyl acetate. The combined organic extract was then washed well with a 3% sodium bicarbonate solution, brined and dried over anhydrous sodium sulfate. This, upon evaporation and subsequent recrystallization of the title compound in distilled ethanol afforded fine crystals suitable for X-ray diffraction study.
All H-atoms were positioned geometrically and refined using a riding model, with d(C—H) = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic, 0.97 Å, Uiso = 1.2Ueq (C) for CH2 and 0.98 Å, Uiso = 1.2Ueq (C) for CH atoms.
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).C19H16ClF2NO2 | F(000) = 752 |
Mr = 363.78 | Dx = 1.471 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2558 reflections |
a = 10.7026 (8) Å | θ = 2.0–28.1° |
b = 8.2017 (6) Å | µ = 0.27 mm−1 |
c = 19.0447 (15) Å | T = 293 K |
β = 100.629 (1)° | Block, colorless |
V = 1643.1 (2) Å3 | 0.29 × 0.25 × 0.22 mm |
Z = 4 |
Bruker SMART APEX diffractometer | 3515 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.018 |
Graphite monochromator | θmax = 28.1°, θmin = 2.0° |
ω scans | h = −14→13 |
18143 measured reflections | k = −10→10 |
3875 independent reflections | l = −25→24 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.111 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0604P)2 + 0.4707P] where P = (Fo2 + 2Fc2)/3 |
3875 reflections | (Δ/σ)max < 0.001 |
226 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
C19H16ClF2NO2 | V = 1643.1 (2) Å3 |
Mr = 363.78 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.7026 (8) Å | µ = 0.27 mm−1 |
b = 8.2017 (6) Å | T = 293 K |
c = 19.0447 (15) Å | 0.29 × 0.25 × 0.22 mm |
β = 100.629 (1)° |
Bruker SMART APEX diffractometer | 3515 reflections with I > 2σ(I) |
18143 measured reflections | Rint = 0.018 |
3875 independent reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.111 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.34 e Å−3 |
3875 reflections | Δρmin = −0.35 e Å−3 |
226 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.19220 (11) | 0.60188 (15) | 0.12209 (7) | 0.0342 (3) | |
H1 | 0.1633 | 0.4907 | 0.1291 | 0.041* | |
C2 | 0.14537 (12) | 0.70807 (17) | 0.17787 (7) | 0.0391 (3) | |
H2A | 0.0532 | 0.7101 | 0.1680 | 0.047* | |
H2B | 0.1725 | 0.6601 | 0.2248 | 0.047* | |
C3 | 0.19437 (12) | 0.87902 (16) | 0.17849 (6) | 0.0355 (3) | |
C4 | 0.31441 (12) | 0.89729 (15) | 0.14859 (7) | 0.0366 (3) | |
H4A | 0.3605 | 0.9917 | 0.1705 | 0.044* | |
H4B | 0.2914 | 0.9184 | 0.0977 | 0.044* | |
C5 | 0.40356 (11) | 0.74875 (14) | 0.15997 (6) | 0.0315 (2) | |
H5 | 0.4393 | 0.7400 | 0.2111 | 0.038* | |
C6 | 0.38663 (12) | 0.44552 (15) | 0.14846 (6) | 0.0342 (3) | |
C7 | 0.52903 (13) | 0.44165 (16) | 0.17627 (8) | 0.0437 (3) | |
H7A | 0.5478 | 0.4980 | 0.2218 | 0.052* | |
H7B | 0.5722 | 0.4986 | 0.1430 | 0.052* | |
C8 | 0.14016 (11) | 0.64593 (15) | 0.04440 (7) | 0.0359 (3) | |
C9 | 0.18650 (13) | 0.56233 (18) | −0.00921 (8) | 0.0438 (3) | |
H9 | 0.2497 | 0.4839 | 0.0024 | 0.053* | |
C10 | 0.13769 (15) | 0.5973 (2) | −0.07922 (8) | 0.0497 (3) | |
C11 | 0.04478 (16) | 0.7120 (2) | −0.09979 (8) | 0.0530 (4) | |
H11 | 0.0147 | 0.7346 | −0.1478 | 0.064* | |
C12 | −0.00203 (16) | 0.7923 (2) | −0.04692 (9) | 0.0548 (4) | |
H12 | −0.0659 | 0.8695 | −0.0593 | 0.066* | |
C13 | 0.04442 (14) | 0.76014 (18) | 0.02456 (8) | 0.0459 (3) | |
H13 | 0.0112 | 0.8156 | 0.0596 | 0.055* | |
C14 | 0.51171 (11) | 0.78384 (15) | 0.12008 (7) | 0.0330 (2) | |
C15 | 0.62680 (12) | 0.84067 (18) | 0.15766 (8) | 0.0420 (3) | |
H15 | 0.6415 | 0.8480 | 0.2072 | 0.050* | |
C16 | 0.71890 (13) | 0.8861 (2) | 0.11948 (9) | 0.0528 (4) | |
C17 | 0.70255 (15) | 0.8775 (2) | 0.04699 (10) | 0.0558 (4) | |
H17 | 0.7667 | 0.9098 | 0.0231 | 0.067* | |
C18 | 0.58841 (15) | 0.8196 (2) | 0.01009 (8) | 0.0507 (4) | |
H18 | 0.5751 | 0.8119 | −0.0394 | 0.061* | |
C19 | 0.49307 (14) | 0.77279 (17) | 0.04628 (7) | 0.0416 (3) | |
H19 | 0.4163 | 0.7338 | 0.0209 | 0.050* | |
N1 | 0.33311 (9) | 0.59708 (12) | 0.13708 (5) | 0.0316 (2) | |
O1 | 0.14246 (10) | 0.99449 (13) | 0.20033 (6) | 0.0477 (2) | |
O2 | 0.32477 (10) | 0.32101 (12) | 0.13649 (6) | 0.0467 (2) | |
F1 | 0.18216 (12) | 0.51239 (17) | −0.13076 (6) | 0.0785 (3) | |
F2 | 0.83117 (10) | 0.9428 (2) | 0.15588 (7) | 0.0907 (4) | |
Cl1 | 0.58658 (4) | 0.24037 (5) | 0.18722 (3) | 0.06261 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0292 (5) | 0.0319 (6) | 0.0411 (6) | −0.0020 (4) | 0.0055 (5) | 0.0025 (5) |
C2 | 0.0355 (6) | 0.0431 (7) | 0.0411 (6) | 0.0005 (5) | 0.0129 (5) | 0.0045 (5) |
C3 | 0.0356 (6) | 0.0407 (7) | 0.0299 (5) | 0.0040 (5) | 0.0056 (4) | −0.0001 (5) |
C4 | 0.0389 (6) | 0.0302 (6) | 0.0422 (6) | −0.0006 (5) | 0.0118 (5) | −0.0019 (5) |
C5 | 0.0318 (6) | 0.0319 (6) | 0.0309 (5) | −0.0024 (4) | 0.0060 (4) | −0.0012 (4) |
C6 | 0.0375 (6) | 0.0327 (6) | 0.0328 (5) | 0.0023 (5) | 0.0075 (5) | 0.0006 (4) |
C7 | 0.0392 (7) | 0.0337 (6) | 0.0572 (8) | 0.0069 (5) | 0.0060 (6) | 0.0044 (6) |
C8 | 0.0310 (6) | 0.0328 (6) | 0.0420 (6) | −0.0048 (5) | 0.0020 (5) | −0.0005 (5) |
C9 | 0.0399 (7) | 0.0435 (7) | 0.0458 (7) | 0.0008 (5) | 0.0021 (5) | −0.0040 (6) |
C10 | 0.0496 (8) | 0.0558 (9) | 0.0434 (7) | −0.0096 (7) | 0.0075 (6) | −0.0066 (6) |
C11 | 0.0545 (8) | 0.0570 (9) | 0.0425 (7) | −0.0111 (7) | −0.0043 (6) | 0.0087 (7) |
C12 | 0.0507 (8) | 0.0511 (8) | 0.0571 (9) | 0.0078 (7) | −0.0045 (7) | 0.0090 (7) |
C13 | 0.0414 (7) | 0.0447 (8) | 0.0495 (8) | 0.0051 (6) | 0.0026 (6) | 0.0006 (6) |
C14 | 0.0319 (6) | 0.0297 (5) | 0.0383 (6) | 0.0006 (4) | 0.0091 (5) | 0.0008 (4) |
C15 | 0.0356 (6) | 0.0450 (7) | 0.0443 (7) | −0.0028 (5) | 0.0046 (5) | 0.0046 (6) |
C16 | 0.0303 (6) | 0.0584 (9) | 0.0685 (10) | −0.0043 (6) | 0.0056 (6) | 0.0149 (7) |
C17 | 0.0423 (8) | 0.0624 (10) | 0.0686 (10) | 0.0073 (7) | 0.0261 (7) | 0.0195 (8) |
C18 | 0.0588 (9) | 0.0532 (9) | 0.0451 (7) | 0.0056 (7) | 0.0227 (7) | 0.0028 (6) |
C19 | 0.0437 (7) | 0.0433 (7) | 0.0388 (6) | −0.0024 (5) | 0.0104 (5) | −0.0027 (5) |
N1 | 0.0294 (5) | 0.0295 (5) | 0.0353 (5) | −0.0005 (4) | 0.0041 (4) | 0.0020 (4) |
O1 | 0.0472 (5) | 0.0474 (6) | 0.0510 (6) | 0.0082 (4) | 0.0157 (4) | −0.0071 (4) |
O2 | 0.0474 (5) | 0.0311 (5) | 0.0601 (6) | −0.0014 (4) | 0.0060 (4) | −0.0032 (4) |
F1 | 0.0865 (8) | 0.0996 (9) | 0.0501 (6) | 0.0098 (7) | 0.0145 (5) | −0.0162 (6) |
F2 | 0.0411 (5) | 0.1322 (12) | 0.0927 (8) | −0.0331 (6) | −0.0035 (5) | 0.0304 (8) |
Cl1 | 0.0550 (2) | 0.0405 (2) | 0.0879 (3) | 0.01621 (16) | 0.0017 (2) | 0.00367 (18) |
C1—N1 | 1.4827 (15) | C8—C9 | 1.3948 (19) |
C1—C8 | 1.5251 (17) | C9—C10 | 1.370 (2) |
C1—C2 | 1.5279 (18) | C9—H9 | 0.9300 |
C1—H1 | 0.9800 | C10—F1 | 1.3590 (19) |
C2—C3 | 1.4963 (19) | C10—C11 | 1.373 (2) |
C2—H2A | 0.9700 | C11—C12 | 1.373 (3) |
C2—H2B | 0.9700 | C11—H11 | 0.9300 |
C3—O1 | 1.2099 (16) | C12—C13 | 1.386 (2) |
C3—C4 | 1.5056 (17) | C12—H12 | 0.9300 |
C4—C5 | 1.5379 (17) | C13—H13 | 0.9300 |
C4—H4A | 0.9700 | C14—C19 | 1.3857 (18) |
C4—H4B | 0.9700 | C14—C15 | 1.3861 (18) |
C5—N1 | 1.4781 (15) | C15—C16 | 1.380 (2) |
C5—C14 | 1.5246 (16) | C15—H15 | 0.9300 |
C5—H5 | 0.9800 | C16—F2 | 1.3542 (18) |
C6—O2 | 1.2154 (16) | C16—C17 | 1.361 (2) |
C6—N1 | 1.3691 (15) | C17—C18 | 1.376 (2) |
C6—C7 | 1.5187 (18) | C17—H17 | 0.9300 |
C7—Cl1 | 1.7609 (14) | C18—C19 | 1.387 (2) |
C7—H7A | 0.9700 | C18—H18 | 0.9300 |
C7—H7B | 0.9700 | C19—H19 | 0.9300 |
C8—C13 | 1.3883 (19) | ||
N1—C1—C8 | 111.69 (10) | C9—C8—C1 | 118.56 (12) |
N1—C1—C2 | 109.49 (10) | C10—C9—C8 | 119.11 (14) |
C8—C1—C2 | 115.56 (11) | C10—C9—H9 | 120.4 |
N1—C1—H1 | 106.5 | C8—C9—H9 | 120.4 |
C8—C1—H1 | 106.5 | F1—C10—C9 | 118.32 (15) |
C2—C1—H1 | 106.5 | F1—C10—C11 | 118.48 (14) |
C3—C2—C1 | 112.34 (10) | C9—C10—C11 | 123.19 (15) |
C3—C2—H2A | 109.1 | C12—C11—C10 | 117.56 (14) |
C1—C2—H2A | 109.1 | C12—C11—H11 | 121.2 |
C3—C2—H2B | 109.1 | C10—C11—H11 | 121.2 |
C1—C2—H2B | 109.1 | C11—C12—C13 | 121.06 (15) |
H2A—C2—H2B | 107.9 | C11—C12—H12 | 119.5 |
O1—C3—C2 | 123.62 (12) | C13—C12—H12 | 119.5 |
O1—C3—C4 | 122.01 (12) | C12—C13—C8 | 120.59 (15) |
C2—C3—C4 | 114.36 (10) | C12—C13—H13 | 119.7 |
C3—C4—C5 | 114.73 (10) | C8—C13—H13 | 119.7 |
C3—C4—H4A | 108.6 | C19—C14—C15 | 119.59 (12) |
C5—C4—H4A | 108.6 | C19—C14—C5 | 120.83 (11) |
C3—C4—H4B | 108.6 | C15—C14—C5 | 119.36 (11) |
C5—C4—H4B | 108.6 | C16—C15—C14 | 118.16 (13) |
H4A—C4—H4B | 107.6 | C16—C15—H15 | 120.9 |
N1—C5—C14 | 113.88 (9) | C14—C15—H15 | 120.9 |
N1—C5—C4 | 110.83 (10) | F2—C16—C17 | 118.22 (14) |
C14—C5—C4 | 106.77 (9) | F2—C16—C15 | 118.41 (15) |
N1—C5—H5 | 108.4 | C17—C16—C15 | 123.37 (14) |
C14—C5—H5 | 108.4 | C16—C17—C18 | 118.13 (13) |
C4—C5—H5 | 108.4 | C16—C17—H17 | 120.9 |
O2—C6—N1 | 122.39 (11) | C18—C17—H17 | 120.9 |
O2—C6—C7 | 121.65 (11) | C17—C18—C19 | 120.47 (14) |
N1—C6—C7 | 115.96 (11) | C17—C18—H18 | 119.8 |
C6—C7—Cl1 | 111.56 (10) | C19—C18—H18 | 119.8 |
C6—C7—H7A | 109.3 | C14—C19—C18 | 120.29 (14) |
Cl1—C7—H7A | 109.3 | C14—C19—H19 | 119.9 |
C6—C7—H7B | 109.3 | C18—C19—H19 | 119.9 |
Cl1—C7—H7B | 109.3 | C6—N1—C5 | 122.80 (10) |
H7A—C7—H7B | 108.0 | C6—N1—C1 | 115.82 (10) |
C13—C8—C9 | 118.47 (13) | C5—N1—C1 | 118.67 (9) |
C13—C8—C1 | 122.89 (12) | ||
N1—C1—C2—C3 | 59.23 (13) | C4—C5—C14—C19 | −75.31 (14) |
C8—C1—C2—C3 | −67.92 (14) | N1—C5—C14—C15 | −138.10 (12) |
C1—C2—C3—O1 | 156.26 (12) | C4—C5—C14—C15 | 99.24 (13) |
C1—C2—C3—C4 | −23.06 (15) | C19—C14—C15—C16 | 0.6 (2) |
O1—C3—C4—C5 | 149.28 (12) | C5—C14—C15—C16 | −173.98 (13) |
C2—C3—C4—C5 | −31.38 (15) | C14—C15—C16—F2 | 179.52 (14) |
C3—C4—C5—N1 | 50.02 (14) | C14—C15—C16—C17 | −0.2 (2) |
C3—C4—C5—C14 | 174.56 (10) | F2—C16—C17—C18 | 179.94 (16) |
O2—C6—C7—Cl1 | 0.30 (17) | C15—C16—C17—C18 | −0.4 (3) |
N1—C6—C7—Cl1 | −179.00 (9) | C16—C17—C18—C19 | 0.4 (2) |
N1—C1—C8—C13 | −134.11 (13) | C15—C14—C19—C18 | −0.6 (2) |
C2—C1—C8—C13 | −8.06 (18) | C5—C14—C19—C18 | 173.95 (13) |
N1—C1—C8—C9 | 49.02 (15) | C17—C18—C19—C14 | 0.0 (2) |
C2—C1—C8—C9 | 175.06 (11) | O2—C6—N1—C5 | 171.94 (12) |
C13—C8—C9—C10 | 1.0 (2) | C7—C6—N1—C5 | −8.77 (16) |
C1—C8—C9—C10 | 178.01 (12) | O2—C6—N1—C1 | 10.87 (17) |
C8—C9—C10—F1 | −178.72 (13) | C7—C6—N1—C1 | −169.84 (11) |
C8—C9—C10—C11 | 0.3 (2) | C14—C5—N1—C6 | 66.79 (14) |
F1—C10—C11—C12 | 177.74 (15) | C4—C5—N1—C6 | −172.80 (10) |
C9—C10—C11—C12 | −1.2 (2) | C14—C5—N1—C1 | −132.65 (11) |
C10—C11—C12—C13 | 1.0 (3) | C4—C5—N1—C1 | −12.24 (14) |
C11—C12—C13—C8 | 0.3 (3) | C8—C1—N1—C6 | −109.19 (12) |
C9—C8—C13—C12 | −1.3 (2) | C2—C1—N1—C6 | 121.50 (11) |
C1—C8—C13—C12 | −178.13 (13) | C8—C1—N1—C5 | 88.92 (13) |
N1—C5—C14—C19 | 47.35 (16) | C2—C1—N1—C5 | −40.39 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2B···O1i | 0.97 | 2.60 | 3.415 (2) | 142 |
C7—H7A···F2ii | 0.97 | 2.49 | 3.270 (2) | 137 |
C18—H18···O2iii | 0.93 | 2.55 | 3.308 (2) | 139 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+3/2, y−1/2, −z+1/2; (iii) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C19H16ClF2NO2 |
Mr | 363.78 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 10.7026 (8), 8.2017 (6), 19.0447 (15) |
β (°) | 100.629 (1) |
V (Å3) | 1643.1 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.27 |
Crystal size (mm) | 0.29 × 0.25 × 0.22 |
Data collection | |
Diffractometer | Bruker SMART APEX diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18143, 3875, 3515 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.662 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.111, 1.03 |
No. of reflections | 3875 |
No. of parameters | 226 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.35 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2B···O1i | 0.97 | 2.60 | 3.415 (2) | 142 |
C7—H7A···F2ii | 0.97 | 2.49 | 3.270 (2) | 137 |
C18—H18···O2iii | 0.93 | 2.55 | 3.308 (2) | 139 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+3/2, y−1/2, −z+1/2; (iii) −x+1, −y+1, −z. |
Footnotes
‡Present address: Institute of Structural Biology and Biophysics-2, Forschungszentrum Jülich, D-52425 Jülich Germany.
Acknowledgements
The authors thank Dr K. Ravikumar, Indian Institute of Chemical Technology, Hyderabad, India, for providing the X-ray data collection facility. GA and YTJ are grateful for the support provided by the second stage of the BK21 program, Republic of Korea. Financial support from the University Grants Commission (UGC-SAP) and the Department of Science & Technology (DST-FIST), Government of India, are acknowledged by DV for providing facilities to the department.
References
Aridoss, G., Amirthaganesan, S., Ashok Kumar, N., Kim, J. T., Lim, K. T., Kabilan, S. & Jeong, Y. T. (2008). Bioorg. Med. Chem. Lett. 18, 6542–6548. Web of Science CSD CrossRef PubMed CAS Google Scholar
Aridoss, G., Balasubramanian, S., Parthiban, P. & Kabilan, S. (2007b). Spectrochim. Acta Part A, 68, 1153–1163. CrossRef CAS Google Scholar
Aridoss, G., Balasubramanian, S., Parthiban, P., Ramachandran, R. & Kabilan, S. (2007a). Med. Chem. Res. 16, 188–204. Web of Science CrossRef CAS Google Scholar
Aridoss, G., Gayathri, D., Velmurugan, D., Kim, M. S. & Jeong, Y. T. (2009b). Acta Cryst. E65, o1708–o1709. Web of Science CSD CrossRef IUCr Journals Google Scholar
Aridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009a). Eur. J. Med. Chem. 44, 577–592. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Fleet, G. W. J., Ramsden, N. G. & Witty, D. R. (1990). Tetrahedron, 45, 319–326. CrossRef Web of Science Google Scholar
Gayathri, D., Velmurugan, D., Aridoss, G., Kabilan, S. & Ravikumar, K. (2008). Acta Cryst. E64, o429. Web of Science CSD CrossRef IUCr Journals Google Scholar
Krishnapillay, M., Krishnakumar, R., Natarajan, A. & Jeyaraman, G. (2000). Indian J. Chem. Sect. B, 39, 419–425. Google Scholar
Mukhtar, T. A. & Wright, G. D. (2005). Chem. Rev. 105, 529–542. Web of Science CrossRef PubMed CAS Google Scholar
Nardelli, M. (1983). Acta Cryst. C39, 1141–1142. CrossRef CAS Web of Science IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Ramachandran, R., Aridoss, G., Velmurugan, D., Kabilan, S. & Jeong, Y. T. (2008). Acta Cryst. E64, o2009–o2010. Web of Science CSD CrossRef IUCr Journals Google Scholar
Richardo, G. J., Juan, B. C., Mario, R. A., Roldan, M. & Peinado, C. R. (1979). Fernando Spen. 47, 168–172. Google Scholar
Schneider, M. J. (1996). In Alkaloids: Chemical and Biological Perspectives, Vol. 10, edited by S. W. Pelletier, pp. 155–157. Oxford: Pergamon. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Winkler, D. A. & Holan, G. J. (1989). J. Med. Chem. 32, 2084–2089. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Amides are a prominent functional group in chemistry due to their being an integral part in biologically important polymers such as peptides and proteins. Functionalized piperidines are among the most common building blocks in natural products, and, more interestingly, in many biologically active compounds such as anopterine, pergoline, scopolamine and morphine (Richardo et al., 1979, Schneider, 1996, Mukhtar & Wright, 2005). Piperidones also have high impact in medicinal field owing to their role as key chiral intermediates for the preparation of a variety of natural, synthetic and semi-synthetic pharmacophores with marked anticancer (Fleet et al., 1990) and anti-HIV activities (Winkler & Holan, 1989). Particularly, amides derived from 2,6-diarylpiperidin-4-ones exhibited marked antibacterial and antitubercular activities (Aridoss et al. 2007a, 2008, 2009a). As a corollary of these interesting biological and pharmaceutical properties and synthetic utility, substantial interest has been demonstrated towards 2,6-diarylpiperidin-4-ones (Krishnapillay et al., 2000, Aridoss et al., 2007b). Recently, we have disclosed the crystal structures of variously substituted 2,6-diarylpiperidin-4-ones and their derivatives (Gayathri et al. 2008, Ramachandran et al., 2008, Aridoss et al., 2009b). In the interest of above, crystal structure of 1-chloroacetyl-2,6-bis (3-fluorophenyl)-piperidin-4-one is reported here.
The molecular structure of compound (I) is illustrated in Fig.1. The sum of the angles at N1 (357.3 (3)°) is in accordance with sp2 hybridization. The dihedral angle between the two phenyl rings is 65.8 (1)°. Fluorine atoms (F1 and F2) lie above the plane of the phenyl rings to which they are attached by 0.041 (1) and 0.003 (2) Å, respectively. The torsion angle around O2—C6—C7—Cl1 indicates the planarity of chloroacetyl moiety. In the present structure, the piperidone ring adops a twist-boat conformation with atoms C1 and C4 deviating by 0.544 (1) and 0.511 (1) Å, respectively, from the least-sqaures plane defined by the remaining atoms (N1/C2/C3/C5) in the ring. When compared with the reported structures of piperidone derivatives (Gayathri et al., 2007, Ramachandran et al., 2008, Aridoss et al., 2009b), it is clear that the conformation of the piperidone ring is highly influenced by the substitutions at various positions. The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for piperidone ring are q2 = 0.671 (1) Å, q3 = 0.045 (1) Å; QT = 0.672 (1)Å and θ = 86.0 (1)°, respectively.
Sterically favoured short non-hydrogen intermolecular contacts are observed between O1 and C6 (-x + 1/2, y + 1/2, -z + 1/2) and C6 and O1 (-x + 1/2, y - 1/2, -z + 1/2), each within a distance of 2.98 (2) Å. The crystal packing is stabilized by C—H···O and C—H···F hydrogen bonds and a π–π intermolecular interaction. Atoms C2 and C7 act as donors to O1 (-x + 1/2, y - 1/2, -z + 1/2) and F2 (-x + 3/2, y - 1/2, -z + 1/2) generating a chain running along the a axis. Atom C18 acts as a donor to O2 (-x + 1, -y + 1, -z) generating a centrosymmetric dimer of R22(16) ring centred at (1/2, 1/2, 0). An intermolecular π–π interaction is observed between the symmetry related six-membered ring, Cg···Cgi [symmetry code: (i) -x, 1 - y, -z; Cg is the centroid of the C8—C13 ring], with the centroid-centroid separation of 3.783 (1)Å and with the slippage of 1.191 Å.