organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Di-tert-butyl-2,2′-bi­pyridine

aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal, and bFaculty of Science and Technology, CIQA, University of the Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
*Correspondence e-mail: filipe.paz@ua.pt

(Received 17 July 2009; accepted 22 July 2009; online 31 July 2009)

In the title compound, C18H24N2, the mol­ecular unit adopts a trans conformation around the central C—C bond [N—C—C—N torsion angle of 179.2 (3)°], with the two aromatic rings almost coplanar [dihedral angle of only 0.70 (4)°]. The crystal packing is driven by co-operative contacts involving weak C—H⋯N and C—H⋯π inter­actions, and also the need to fill effectively the available space.

Related literature

For related structures, see: Batsanov et al. (2007[Batsanov, A. S., Mkhalid, I. A. I. & Marder, T. B. (2007). Acta Cryst. E63, o1196-o1198.]); Coelho et al. (2007[Coelho, A. C., Gonçalves, I. S. & Almeida Paz, F. A. (2007). Acta Cryst. E63, o1380-o1382.]); Paz & Klinowski (2003[Paz, F. A. A. & Klinowski, J. (2003). CrystEngComm, 5, 238-244.]); Paz et al. (2002[Paz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002). New J. Chem. 26, 381-383.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C18H24N2

  • Mr = 268.39

  • Monoclinic, P 21 /c

  • a = 10.241 (5) Å

  • b = 6.228 (3) Å

  • c = 24.559 (10) Å

  • β = 99.75 (3)°

  • V = 1543.7 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.20 × 0.16 × 0.14 mm

Data collection
  • Bruker X8 Kappa CCD APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.98, Tmax = 0.99

  • 15295 measured reflections

  • 2722 independent reflections

  • 1805 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.217

  • S = 1.12

  • 2722 reflections

  • 187 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12B⋯N1i 0 2.74 3.637 (4) 155
C12—H12ACg2ii 0 0 3.78 140
C1—H1⋯Cg1ii 0 0 3.40 137
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of the N1,C1–C5 and N2,C6–C10 rings, respectively.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organic derivatives of 2,2'-bipyridine find innumerous applications in the field of synthetic chemistry, in particular as N,N-chelating agents which are able to coordinate to a myriad of metal centres. A search in the literature and in the Cambridge Structural Database (CSD, Version of November 2008 with three updates; Allen, 2002) reveals that the title compound has been predominantely employed in the coordination chemistry field with only the structure by Batsanov et al. (2007) being of an organic crystal in which the title compound co-crystallizes with hexafluorobenzene: C18H24N2.C6F6. Following our interest on organic crystals with pyridine derivatives (Coelho et al., 2007; Paz & Klinowski, 2003; Paz et al., 2002) we wish to report the structure of the title compound (I) at 150K.

The asymmetric unit is composed of an entire molecular unit as depicted in Fig. 1. The molecule adopts in the crystal structure a trans conformation around the central C—C bond, a feature also reported by Batsanov et al. for the co-crystal with hexafluorobenzene. This conformation seems to minimize steric repulsion between the substituent tert-butyl groups and the heteroatoms from the aromatic rings. While in the structure of Batsanov et al. the 4,4'-di-tert-butyl-2,2'-dipyridyl residue is structurally located on a mirror plane, which ensures coplanarity for the two aromatic rings, in the standalone crystal here reported the atoms are located on generic positions. Nevertheless, the average planes containing the two aromatic rings subtend a dihedral angle of only ca 0.70°, with the corresponding <(N1—C5—C6—N2) torsion angle around the central bond being of 179.2 (3)°.

Individual molecules close pack in the solid state forming layers placed in the (001) plane of the unit cell (Fig. 2). The presence of the large tert-butyl groups seems to prevent the presence of π-π stacking interactions as it can be easily observed by manipulating Enhanced Fig. 4. We note the existence of a terminal —CH3 group engaged in a C—H···N hydrogen bonding interaction: even though this contact is considered as weak (dD···A being ca 3.64 Å) it is directional with <(DHA) being above 150° (Table 1). In addition, the same —CH3 group is involved in a C—H···π contact with the aromatic ring of an adjacent molecular unit [not shown; dC···π = ca 3.78 Å; <(C12—H12A···π) = ca 140°]. A similar contact connects two adjacent aromatic rings [not shown; dC1···π = ca 3.40 Å; <(C1—H1···π) = ca 137°]. Besides these weak cooperative interactions, close packing in (I) is further mediated by van der Waals interactions so to promote an effective filling of the available space. Noteworthy, in the C18H24N2.C6F6 organic crystal π-π contacts mediate the close packing because the auxiliary C6F6 molecule is small and can easily be accommodated on top of the 2,2'-dipyridyl residue.

Related literature top

For related organic crystals, see: Batsanov et al. (2007); Coelho et al. (2007); Paz & Klinowski (2003); Paz et al. (2002). For a description of the Cambridge Structural Database, see: Allen (2002). Cg1 and Cg2 are the centroids of the N1,C1–C5 and N2,C6–C10 rings, respectively.

Experimental top

4,4'-Di-tert-butyl-2,2'-dipyridyl was purchased from Sigma-Aldrich (98% purity) and used as received without further purification. Single crystals were isolated from the slow evaporation (at ambient temperature) over the period of one month from a solution of the title compound in toluene (Sigma-Aldrich, ACS reagent, >99.5%).

Refinement top

Hydrogen atoms bound to carbon were located at their idealized positions and were included in the final structural model in riding-motion approximation with C—H = 0.93 (aromatic C—H) or 0.96 Å (for the —CH3 moieties). The isotropic thermal displacement parameters for these atoms were fixed at 1.2 or 1.5 for the aromatic C—H or the —CH3 moieties, respectively, times Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-Plus (Bruker,2005); data reduction: SAINT-Plus (Bruker,2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Schematic representation of the molecular unit of the title compound, with non-hydrogen atoms being represented as thermal displacement ellipsoids drawn at the 50% probability level. The atomic labeling is provided for all non-hydrogen atoms. Bond lengths and angles are provided as supplementary material.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the b axis of the unit cell.
[Figure 3] Fig. 3. Asymmetric unit of the title compound with all non-hydrogen atoms represented as thermal ellipsoids drawn at the 50% probability level.
[Figure 4] Fig. 4. Crystal packing of the title compound viewed along the [010] direction of the unit cell.
4,4'-Di-tert-butyl-2,2'-bipyridine top
Crystal data top
C18H24N2F(000) = 584
Mr = 268.39Dx = 1.155 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5252 reflections
a = 10.241 (5) Åθ = 3.4–25.3°
b = 6.228 (3) ŵ = 0.07 mm1
c = 24.559 (10) ÅT = 296 K
β = 99.75 (3)°Plate, colourless
V = 1543.7 (12) Å30.20 × 0.16 × 0.14 mm
Z = 4
Data collection top
Bruker X8 Kappa CCD APEXII
diffractometer
2722 independent reflections
Radiation source: fine-focus sealed tube1805 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω and ϕ scansθmax = 25.3°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1211
Tmin = 0.98, Tmax = 0.99k = 75
15295 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.217H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0449P)2 + 4.7425P]
where P = (Fo2 + 2Fc2)/3
2722 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C18H24N2V = 1543.7 (12) Å3
Mr = 268.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.241 (5) ŵ = 0.07 mm1
b = 6.228 (3) ÅT = 296 K
c = 24.559 (10) Å0.20 × 0.16 × 0.14 mm
β = 99.75 (3)°
Data collection top
Bruker X8 Kappa CCD APEXII
diffractometer
2722 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
1805 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 0.99Rint = 0.044
15295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0800 restraints
wR(F2) = 0.217H-atom parameters constrained
S = 1.12Δρmax = 0.29 e Å3
2722 reflectionsΔρmin = 0.44 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3249 (3)0.3001 (5)0.25918 (12)0.0246 (7)
N20.1719 (3)0.8151 (5)0.24419 (12)0.0243 (7)
C10.3931 (3)0.1715 (6)0.23049 (14)0.0252 (8)
H10.42010.03860.24560.030*
C20.4260 (3)0.2236 (6)0.17986 (14)0.0256 (9)
H20.47570.12840.16250.031*
C30.3852 (3)0.4166 (6)0.15491 (13)0.0227 (8)
C40.3118 (3)0.5477 (6)0.18389 (14)0.0240 (8)
H40.28010.67860.16890.029*
C50.2852 (3)0.4848 (6)0.23540 (14)0.0218 (8)
C60.2103 (3)0.6285 (6)0.26780 (14)0.0213 (8)
C70.1830 (3)0.5671 (6)0.31914 (14)0.0226 (8)
H70.21300.43510.33400.027*
C80.1115 (3)0.7010 (6)0.34851 (14)0.0233 (8)
C90.0721 (3)0.8944 (6)0.32347 (14)0.0259 (9)
H90.02410.99170.34090.031*
C100.1041 (3)0.9434 (6)0.27250 (15)0.0258 (9)
H100.07631.07520.25690.031*
C110.4250 (4)0.4806 (7)0.10003 (14)0.0272 (9)
C120.5727 (4)0.5224 (11)0.11030 (19)0.0645 (17)
H12A0.61880.39380.12380.097*
H12B0.59290.63450.13720.097*
H12C0.60000.56550.07640.097*
C130.3929 (6)0.3050 (10)0.05788 (19)0.0722 (19)
H13A0.41080.35400.02280.108*
H13B0.30090.26750.05450.108*
H13C0.44640.18130.06940.108*
C140.3543 (6)0.6789 (11)0.0762 (2)0.075 (2)
H14A0.38180.71330.04170.112*
H14B0.37540.79630.10150.112*
H14C0.26040.65420.07010.112*
C150.0734 (4)0.6350 (7)0.40367 (14)0.0277 (9)
C160.1739 (5)0.4837 (10)0.43529 (18)0.0592 (16)
H16A0.14970.45220.47050.089*
H16B0.25990.54960.44070.089*
H16C0.17610.35300.41470.089*
C170.0606 (5)0.5247 (10)0.39153 (18)0.0558 (15)
H17A0.12470.62140.37170.084*
H17B0.08770.48400.42560.084*
H17C0.05410.39890.36950.084*
C180.0621 (6)0.8287 (9)0.44040 (18)0.0594 (15)
H18A0.00770.92080.42290.089*
H18B0.14430.90620.44620.089*
H18C0.04260.78120.47530.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0221 (16)0.0236 (19)0.0285 (16)0.0027 (14)0.0056 (12)0.0015 (13)
N20.0191 (15)0.0244 (19)0.0306 (16)0.0026 (14)0.0073 (12)0.0036 (14)
C10.0225 (19)0.021 (2)0.0313 (19)0.0014 (16)0.0021 (15)0.0012 (16)
C20.0210 (19)0.029 (2)0.0274 (18)0.0026 (17)0.0044 (15)0.0060 (16)
C30.0175 (18)0.027 (2)0.0240 (18)0.0001 (16)0.0029 (14)0.0027 (16)
C40.0197 (18)0.026 (2)0.0256 (18)0.0016 (16)0.0027 (14)0.0020 (16)
C50.0166 (17)0.023 (2)0.0249 (17)0.0002 (16)0.0023 (14)0.0001 (15)
C60.0165 (17)0.021 (2)0.0256 (18)0.0033 (15)0.0013 (14)0.0043 (15)
C70.0215 (18)0.019 (2)0.0260 (18)0.0003 (16)0.0015 (14)0.0009 (15)
C80.0178 (18)0.026 (2)0.0263 (18)0.0042 (16)0.0031 (14)0.0051 (16)
C90.0205 (19)0.026 (2)0.0320 (19)0.0022 (16)0.0064 (15)0.0027 (16)
C100.0198 (18)0.024 (2)0.0336 (19)0.0025 (16)0.0055 (15)0.0023 (17)
C110.026 (2)0.033 (2)0.0240 (18)0.0017 (17)0.0078 (15)0.0013 (16)
C120.041 (3)0.112 (5)0.043 (3)0.022 (3)0.012 (2)0.017 (3)
C130.118 (5)0.071 (4)0.034 (3)0.030 (4)0.031 (3)0.013 (3)
C140.102 (5)0.085 (5)0.049 (3)0.046 (4)0.045 (3)0.034 (3)
C150.028 (2)0.033 (2)0.0227 (18)0.0033 (18)0.0056 (15)0.0009 (16)
C160.061 (3)0.085 (4)0.036 (2)0.028 (3)0.021 (2)0.025 (3)
C170.050 (3)0.084 (4)0.037 (2)0.031 (3)0.018 (2)0.003 (3)
C180.100 (4)0.048 (3)0.036 (2)0.001 (3)0.028 (3)0.002 (2)
Geometric parameters (Å, º) top
N1—C51.323 (5)C11—C121.513 (6)
N1—C11.338 (5)C12—H12A0.9600
N2—C61.328 (5)C12—H12B0.9600
N2—C101.329 (5)C12—H12C0.9600
C1—C21.381 (5)C13—H13A0.9600
C1—H10.9300C13—H13B0.9600
C2—C31.382 (5)C13—H13C0.9600
C2—H20.9300C14—H14A0.9600
C3—C41.385 (5)C14—H14B0.9600
C3—C111.526 (5)C14—H14C0.9600
C4—C51.395 (5)C15—C161.510 (6)
C4—H40.9300C15—C171.518 (6)
C5—C61.493 (5)C15—C181.522 (6)
C6—C71.390 (5)C16—H16A0.9600
C7—C81.389 (5)C16—H16B0.9600
C7—H70.9300C16—H16C0.9600
C8—C91.382 (5)C17—H17A0.9600
C8—C151.529 (5)C17—H17B0.9600
C9—C101.381 (5)C17—H17C0.9600
C9—H90.9300C18—H18A0.9600
C10—H100.9300C18—H18B0.9600
C11—C141.500 (6)C18—H18C0.9600
C11—C131.503 (6)
C5—N1—C1115.9 (3)H12A—C12—H12B109.5
C6—N2—C10116.1 (3)C11—C12—H12C109.5
N1—C1—C2124.2 (4)H12A—C12—H12C109.5
N1—C1—H1117.9H12B—C12—H12C109.5
C2—C1—H1117.9C11—C13—H13A109.5
C1—C2—C3120.1 (3)C11—C13—H13B109.5
C1—C2—H2119.9H13A—C13—H13B109.5
C3—C2—H2119.9C11—C13—H13C109.5
C2—C3—C4115.8 (3)H13A—C13—H13C109.5
C2—C3—C11120.9 (3)H13B—C13—H13C109.5
C4—C3—C11123.3 (3)C11—C14—H14A109.5
C3—C4—C5120.4 (4)C11—C14—H14B109.5
C3—C4—H4119.8H14A—C14—H14B109.5
C5—C4—H4119.8C11—C14—H14C109.5
N1—C5—C4123.5 (3)H14A—C14—H14C109.5
N1—C5—C6115.7 (3)H14B—C14—H14C109.5
C4—C5—C6120.8 (3)C16—C15—C17109.5 (4)
N2—C6—C7123.1 (3)C16—C15—C18107.7 (4)
N2—C6—C5115.6 (3)C17—C15—C18108.6 (4)
C7—C6—C5121.3 (3)C16—C15—C8111.7 (3)
C8—C7—C6120.7 (4)C17—C15—C8107.8 (3)
C8—C7—H7119.7C18—C15—C8111.6 (4)
C6—C7—H7119.7C15—C16—H16A109.5
C9—C8—C7115.6 (3)C15—C16—H16B109.5
C9—C8—C15122.0 (3)H16A—C16—H16B109.5
C7—C8—C15122.4 (3)C15—C16—H16C109.5
C10—C9—C8120.0 (3)H16A—C16—H16C109.5
C10—C9—H9120.0H16B—C16—H16C109.5
C8—C9—H9120.0C15—C17—H17A109.5
N2—C10—C9124.5 (4)C15—C17—H17B109.5
N2—C10—H10117.7H17A—C17—H17B109.5
C9—C10—H10117.7C15—C17—H17C109.5
C14—C11—C13107.2 (4)H17A—C17—H17C109.5
C14—C11—C12109.0 (4)H17B—C17—H17C109.5
C13—C11—C12109.6 (4)C15—C18—H18A109.5
C14—C11—C3112.1 (3)C15—C18—H18B109.5
C13—C11—C3111.0 (3)H18A—C18—H18B109.5
C12—C11—C3107.9 (3)C15—C18—H18C109.5
C11—C12—H12A109.5H18A—C18—H18C109.5
C11—C12—H12B109.5H18B—C18—H18C109.5
C5—N1—C1—C21.9 (5)C6—C7—C8—C90.5 (5)
N1—C1—C2—C31.7 (6)C6—C7—C8—C15176.8 (3)
C1—C2—C3—C40.1 (5)C7—C8—C9—C100.1 (5)
C1—C2—C3—C11177.7 (3)C15—C8—C9—C10177.2 (3)
C2—C3—C4—C51.2 (5)C6—N2—C10—C90.2 (5)
C11—C3—C4—C5176.3 (3)C8—C9—C10—N20.2 (6)
C1—N1—C5—C40.5 (5)C2—C3—C11—C14171.5 (4)
C1—N1—C5—C6179.4 (3)C4—C3—C11—C1411.1 (6)
C3—C4—C5—N11.1 (5)C2—C3—C11—C1351.7 (5)
C3—C4—C5—C6177.8 (3)C4—C3—C11—C13131.0 (4)
C10—N2—C6—C70.3 (5)C2—C3—C11—C1268.5 (5)
C10—N2—C6—C5179.4 (3)C4—C3—C11—C12108.9 (5)
N1—C5—C6—N2179.2 (3)C9—C8—C15—C16152.6 (4)
C4—C5—C6—N20.2 (5)C7—C8—C15—C1630.2 (5)
N1—C5—C6—C71.1 (5)C9—C8—C15—C1787.1 (5)
C4—C5—C6—C7179.9 (3)C7—C8—C15—C1790.1 (4)
N2—C6—C7—C80.6 (5)C9—C8—C15—C1832.0 (5)
C5—C6—C7—C8179.0 (3)C7—C8—C15—C18150.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AH···AD···AD—H···A
C12—H12B···N1i2.743.637 (4)155
C12—H12A···Cg2ii3.78140
C1—H1···Cg1ii3.40137
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H24N2
Mr268.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.241 (5), 6.228 (3), 24.559 (10)
β (°) 99.75 (3)
V3)1543.7 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.20 × 0.16 × 0.14
Data collection
DiffractometerBruker X8 Kappa CCD APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.98, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
15295, 2722, 1805
Rint0.044
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.217, 1.12
No. of reflections2722
No. of parameters187
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.44

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker,2005), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AH···AD···AD—H···A
C12—H12B···N1i2.7423.637 (4)155
C12—H12A···Cg2ii.3.78140
C1—H1···Cg1ii.3.40137
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

We are grateful to Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support (project PTDC/QUI/71198/2006) and also for specific funding towards the purchase of the single-crystal diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBatsanov, A. S., Mkhalid, I. A. I. & Marder, T. B. (2007). Acta Cryst. E63, o1196–o1198.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoelho, A. C., Gonçalves, I. S. & Almeida Paz, F. A. (2007). Acta Cryst. E63, o1380–o1382.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPaz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002). New J. Chem. 26, 381–383.  Google Scholar
First citationPaz, F. A. A. & Klinowski, J. (2003). CrystEngComm, 5, 238–244.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds