organic compounds
Ethyl 1-acetyl-1H-indole-3-carboxylate
aDepartment of Chemistry, Boswell Science Complex, Tennessee State University, Nashville, 3500 John A Merritt Blvd, Nashville, TN 37209, USA, bDepartment of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N Cramer Street, Milwaukee, WI 53211, USA, and cYoungstown State University, Department of Chemistry, One University Plaza, Youngstown Ohio 44555-3663, USA
*Correspondence e-mail: tsiddiqu@tnstate.edu
The title compound, C13H13NO3, was synthesized by acetylation of ethyl 1H-indole-3-carboxylate. The aromatic ring system of the molecule is essentially planar, but the saturated ethyl group is also located within this plane and the overall r.m.s. deviation from planarity is only 0.034 Å. Pairs of C—H⋯O interactions connect molecules into chains along the diagonal of the Molecules also form weakly connected dimers via π⋯π stacking interactions of the indole rings with centroid–centroid separations of 3.571 (1) Å. C—H⋯π interactions between methylene and methyl groups and the indole and benzene ring complete the directional intermolecular interactions found in the crystal structure.
Related literature
For the biological properties of tryptophan derivatives, see: Ma et al. (2001); Zhou et al. (2006); Zhao, Smith et al. (2002); Zhao, Liao & Cook (2002). For synthetic procedures towards tryptophan-like compounds, see: Ager & Laneman (2004); Amir-Heidari et al. (2007); Carlier et al. (2002); Hengartner et al. (1979); Moriya et al. (1980). For the synthesis of 2-acetamido-3-ethoxy-3-oxopropanoic acid, see: Hellmann et al. (1958). For NMR data for the title compound, see: Reimann et al. (1990).
Experimental
Crystal data
|
Data collection
Refinement
|
Data collection: XSCANS (Siemens, 1996); cell XSCANS; data reduction: XSCANS; program(s) used to solve structure: XPREP (Siemens 1994) and SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809025379/bh2233sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809025379/bh2233Isup2.hkl
2-Acetamido-3-ethoxy-3-oxopropanoic acid (one of the starting materials) was prepared from acetylamino malonic acid diethylester following the process developed by Hellmann et al. (1958). The title compound was prepared as follows: to a mixture of 0.37 g (1.97 mmol) of the indole ester ethyl 1H-indole-3-carboxylate, 1.1 g (5.9 mmol) of 2-acetamido-3-ethoxy-3-oxopropanoic acid, and 4.54 ml of pyridine was added at 288 K (15 °C) over 15 minutes 1.6 ml of acetic anhydride. The reaction mixture turned yellow and was stirred at 333 K (60 °C) for 3 h. An additional 0.18 g (0.9 mmol) of ethyl acetamido malonate was added and stirring was continued for 22 h. Ice (10 ml) was added, and the mixture was stirred for 2 h and then diluted with 20 ml of water. The resulting solution was extracted with EtOAc (2 × 20 ml), the combined organic layer was dried with anhydrous Na2SO4 and the solvent was removed under reduced pressure. 0.4 g (99%) of 1H-indole-3-carboxylicacid-N-acetyl ethyl ester was isolated. 1HNMR CDCl3 δ (p.p.m.): 8.70–8.50 (m,1H and 2H), 7.60–7.30 (m, 2H), 4.45 (q, J = 7 Hz, OCH2CH3), 2.70 (s, COCH3), 1.45 (t, J = 7 Hz, OCH2CH3). The NMR data agree with those reported previously (Reimann et al., 1990). Crystals suitable for X-ray structural analysis were obtained by recrystallization form ethanol in a refrigerator.
All hydrogen atoms were added in calculated positions with a C—H bond distances of 0.97 (methylene), 0.93 (aromatic) and 0.96 Å (methyl). They were refined with isotropic displacement parameters Uiso of 1.5 (methyl) or 1.2 times Ueq (all others) of the adjacent carbon atom.
Data collection: XSCANS (Siemens, 1996); cell
XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: XPREP (Siemens 1994) and SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Synthesis of the title compound (4). | |
Fig. 2. Thermal ellipsoid plot of the title compound with the atom labeling scheme. Displacement ellipsoids are shown at the 50% probability level and H atoms are shown as capped sticks. | |
Fig. 3. Packing view of the title compound showing C—H···O interactions (blue lines). |
C13H13NO3 | Z = 2 |
Mr = 231.24 | F(000) = 244 |
Triclinic, P1 | Dx = 1.327 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.519 (1) Å | Cell parameters from 23 reflections |
b = 8.479 (1) Å | θ = 3.7–11.4° |
c = 10.187 (2) Å | µ = 0.10 mm−1 |
α = 97.38 (1)° | T = 296 K |
β = 95.78 (2)° | Block, colourless |
γ = 114.28 (1)° | 0.51 × 0.41 × 0.20 mm |
V = 578.58 (15) Å3 |
Siemens P4 diffractometer | 1696 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.019 |
Graphite monochromator | θmax = 25.0°, θmin = 2.1° |
2θ/ω scans | h = −8→1 |
Absorption correction: multi-scan [XSCANS (Siemens 1996) and XPREP (Siemens, 1994)] | k = −9→9 |
Tmin = 0.823, Tmax = 0.981 | l = −12→12 |
2536 measured reflections | 3 standard reflections every 97 reflections |
2027 independent reflections | intensity decay: <1% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.120 | w = 1/[σ2(Fo2) + (0.0647P)2 + 0.0738P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.001 |
2027 reflections | Δρmax = 0.17 e Å−3 |
155 parameters | Δρmin = −0.18 e Å−3 |
0 restraints | Extinction correction: SHELXTL (Bruker, 2003; Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 constraints | Extinction coefficient: 0.103 (12) |
Primary atom site location: structure-invariant direct methods |
C13H13NO3 | γ = 114.28 (1)° |
Mr = 231.24 | V = 578.58 (15) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.519 (1) Å | Mo Kα radiation |
b = 8.479 (1) Å | µ = 0.10 mm−1 |
c = 10.187 (2) Å | T = 296 K |
α = 97.38 (1)° | 0.51 × 0.41 × 0.20 mm |
β = 95.78 (2)° |
Siemens P4 diffractometer | 1696 reflections with I > 2σ(I) |
Absorption correction: multi-scan [XSCANS (Siemens 1996) and XPREP (Siemens, 1994)] | Rint = 0.019 |
Tmin = 0.823, Tmax = 0.981 | 3 standard reflections every 97 reflections |
2536 measured reflections | intensity decay: <1% |
2027 independent reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.120 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.17 e Å−3 |
2027 reflections | Δρmin = −0.18 e Å−3 |
155 parameters |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3179 (2) | 0.9158 (2) | 0.76860 (15) | 0.0474 (4) | |
C2 | 0.3276 (2) | 0.8319 (2) | 0.64495 (16) | 0.0560 (4) | |
H2 | 0.3926 | 0.8952 | 0.5826 | 0.067* | |
C3 | 0.2364 (3) | 0.6502 (2) | 0.61896 (18) | 0.0641 (5) | |
H3 | 0.2402 | 0.5898 | 0.5371 | 0.077* | |
C4 | 0.1394 (3) | 0.5554 (2) | 0.71141 (19) | 0.0658 (5) | |
H4 | 0.0804 | 0.4330 | 0.6907 | 0.079* | |
C5 | 0.1286 (3) | 0.6392 (2) | 0.83389 (17) | 0.0572 (4) | |
H5 | 0.0629 | 0.5747 | 0.8955 | 0.069* | |
C6 | 0.2186 (2) | 0.8227 (2) | 0.86285 (15) | 0.0477 (4) | |
C7 | 0.2359 (2) | 0.9517 (2) | 0.97738 (15) | 0.0477 (4) | |
C8 | 0.3421 (2) | 1.1130 (2) | 0.95024 (15) | 0.0491 (4) | |
H8 | 0.3747 | 1.2189 | 1.0077 | 0.059* | |
C9 | 0.1539 (2) | 0.9133 (2) | 1.10037 (16) | 0.0526 (4) | |
C10 | 0.5038 (3) | 1.2371 (2) | 0.76197 (16) | 0.0563 (4) | |
C11 | 0.5648 (3) | 1.4194 (3) | 0.8383 (2) | 0.0756 (6) | |
H11A | 0.6392 | 1.4336 | 0.9248 | 0.113* | |
H11B | 0.4491 | 1.4377 | 0.8497 | 0.113* | |
H11C | 0.6452 | 1.5037 | 0.7894 | 0.113* | |
C12 | 0.1351 (3) | 1.0333 (3) | 1.31867 (17) | 0.0613 (5) | |
H12A | 0.1950 | 0.9683 | 1.3634 | 0.074* | |
H12B | −0.0076 | 0.9667 | 1.3045 | 0.074* | |
C13 | 0.1950 (3) | 1.2107 (3) | 1.40273 (18) | 0.0724 (5) | |
H13A | 0.1508 | 1.1970 | 1.4875 | 0.109* | |
H13B | 0.1361 | 1.2743 | 1.3572 | 0.109* | |
H13C | 0.3366 | 1.2747 | 1.4175 | 0.109* | |
N1 | 0.39555 (19) | 1.09788 (17) | 0.82406 (12) | 0.0489 (4) | |
O1 | 0.0559 (3) | 0.76795 (18) | 1.11828 (14) | 0.0845 (5) | |
O2 | 0.20161 (17) | 1.05915 (15) | 1.19112 (11) | 0.0559 (3) | |
O3 | 0.5434 (2) | 1.20764 (19) | 0.65295 (13) | 0.0814 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0485 (8) | 0.0506 (9) | 0.0420 (8) | 0.0226 (7) | 0.0046 (6) | 0.0028 (6) |
C2 | 0.0594 (10) | 0.0612 (10) | 0.0452 (9) | 0.0262 (8) | 0.0100 (7) | 0.0006 (7) |
C3 | 0.0707 (11) | 0.0617 (11) | 0.0531 (10) | 0.0282 (9) | 0.0083 (8) | −0.0092 (8) |
C4 | 0.0744 (11) | 0.0493 (10) | 0.0660 (11) | 0.0245 (9) | 0.0072 (9) | −0.0049 (8) |
C5 | 0.0631 (10) | 0.0494 (9) | 0.0552 (10) | 0.0216 (8) | 0.0084 (8) | 0.0070 (7) |
C6 | 0.0492 (8) | 0.0497 (8) | 0.0437 (8) | 0.0231 (7) | 0.0043 (6) | 0.0036 (7) |
C7 | 0.0521 (8) | 0.0502 (9) | 0.0419 (8) | 0.0239 (7) | 0.0077 (6) | 0.0062 (7) |
C8 | 0.0569 (9) | 0.0503 (9) | 0.0405 (8) | 0.0245 (7) | 0.0102 (6) | 0.0032 (6) |
C9 | 0.0617 (9) | 0.0541 (10) | 0.0467 (9) | 0.0283 (8) | 0.0122 (7) | 0.0108 (7) |
C10 | 0.0656 (10) | 0.0570 (10) | 0.0478 (9) | 0.0254 (8) | 0.0155 (7) | 0.0131 (7) |
C11 | 0.0980 (15) | 0.0525 (11) | 0.0726 (12) | 0.0247 (10) | 0.0284 (11) | 0.0146 (9) |
C12 | 0.0718 (11) | 0.0789 (12) | 0.0442 (9) | 0.0395 (10) | 0.0208 (8) | 0.0160 (8) |
C13 | 0.0812 (13) | 0.0925 (14) | 0.0491 (10) | 0.0451 (11) | 0.0156 (9) | 0.0023 (9) |
N1 | 0.0562 (8) | 0.0484 (7) | 0.0406 (7) | 0.0215 (6) | 0.0105 (5) | 0.0044 (5) |
O1 | 0.1286 (12) | 0.0546 (8) | 0.0692 (9) | 0.0304 (8) | 0.0424 (8) | 0.0197 (6) |
O2 | 0.0660 (7) | 0.0586 (7) | 0.0430 (6) | 0.0256 (6) | 0.0172 (5) | 0.0069 (5) |
O3 | 0.1158 (11) | 0.0731 (9) | 0.0556 (8) | 0.0346 (8) | 0.0377 (7) | 0.0162 (7) |
C1—C2 | 1.389 (2) | C9—O1 | 1.197 (2) |
C1—C6 | 1.399 (2) | C9—O2 | 1.3367 (19) |
C1—N1 | 1.4186 (19) | C10—O3 | 1.201 (2) |
C2—C3 | 1.379 (2) | C10—N1 | 1.400 (2) |
C2—H2 | 0.9300 | C10—C11 | 1.497 (3) |
C3—C4 | 1.384 (3) | C11—H11A | 0.9600 |
C3—H3 | 0.9300 | C11—H11B | 0.9600 |
C4—C5 | 1.381 (2) | C11—H11C | 0.9600 |
C4—H4 | 0.9300 | C12—O2 | 1.449 (2) |
C5—C6 | 1.393 (2) | C12—C13 | 1.494 (3) |
C5—H5 | 0.9300 | C12—H12A | 0.9700 |
C6—C7 | 1.449 (2) | C12—H12B | 0.9700 |
C7—C8 | 1.352 (2) | C13—H13A | 0.9600 |
C7—C9 | 1.467 (2) | C13—H13B | 0.9600 |
C8—N1 | 1.391 (2) | C13—H13C | 0.9600 |
C8—H8 | 0.9300 | ||
C2—C1—C6 | 122.32 (15) | O2—C9—C7 | 112.43 (14) |
C2—C1—N1 | 130.20 (15) | O3—C10—N1 | 120.26 (16) |
C6—C1—N1 | 107.48 (13) | O3—C10—C11 | 123.11 (16) |
C3—C2—C1 | 116.89 (17) | N1—C10—C11 | 116.63 (15) |
C3—C2—H2 | 121.6 | C10—C11—H11A | 109.5 |
C1—C2—H2 | 121.6 | C10—C11—H11B | 109.5 |
C2—C3—C4 | 121.75 (17) | H11A—C11—H11B | 109.5 |
C2—C3—H3 | 119.1 | C10—C11—H11C | 109.5 |
C4—C3—H3 | 119.1 | H11A—C11—H11C | 109.5 |
C5—C4—C3 | 121.27 (17) | H11B—C11—H11C | 109.5 |
C5—C4—H4 | 119.4 | O2—C12—C13 | 107.88 (15) |
C3—C4—H4 | 119.4 | O2—C12—H12A | 110.1 |
C4—C5—C6 | 118.33 (17) | C13—C12—H12A | 110.1 |
C4—C5—H5 | 120.8 | O2—C12—H12B | 110.1 |
C6—C5—H5 | 120.8 | C13—C12—H12B | 110.1 |
C5—C6—C1 | 119.44 (14) | H12A—C12—H12B | 108.4 |
C5—C6—C7 | 133.47 (15) | C12—C13—H13A | 109.5 |
C1—C6—C7 | 107.10 (14) | C12—C13—H13B | 109.5 |
C8—C7—C6 | 107.50 (14) | H13A—C13—H13B | 109.5 |
C8—C7—C9 | 126.52 (15) | C12—C13—H13C | 109.5 |
C6—C7—C9 | 125.98 (15) | H13A—C13—H13C | 109.5 |
C7—C8—N1 | 110.33 (14) | H13B—C13—H13C | 109.5 |
C7—C8—H8 | 124.8 | C8—N1—C10 | 126.27 (14) |
N1—C8—H8 | 124.8 | C8—N1—C1 | 107.60 (13) |
O1—C9—O2 | 123.51 (15) | C10—N1—C1 | 126.12 (13) |
O1—C9—C7 | 124.06 (16) | C9—O2—C12 | 116.25 (13) |
C6—C1—C2—C3 | −0.9 (2) | C8—C7—C9—O1 | 177.82 (17) |
N1—C1—C2—C3 | −179.95 (15) | C6—C7—C9—O1 | −2.6 (3) |
C1—C2—C3—C4 | 0.1 (3) | C8—C7—C9—O2 | −2.5 (2) |
C2—C3—C4—C5 | 0.5 (3) | C6—C7—C9—O2 | 177.09 (13) |
C3—C4—C5—C6 | −0.2 (3) | C7—C8—N1—C10 | 179.14 (15) |
C4—C5—C6—C1 | −0.6 (2) | C7—C8—N1—C1 | 0.04 (17) |
C4—C5—C6—C7 | 179.54 (17) | O3—C10—N1—C8 | 179.02 (16) |
C2—C1—C6—C5 | 1.2 (2) | C11—C10—N1—C8 | −1.0 (3) |
N1—C1—C6—C5 | −179.57 (13) | O3—C10—N1—C1 | −2.1 (3) |
C2—C1—C6—C7 | −178.95 (14) | C11—C10—N1—C1 | 177.96 (15) |
N1—C1—C6—C7 | 0.31 (16) | C2—C1—N1—C8 | 178.95 (16) |
C5—C6—C7—C8 | 179.58 (17) | C6—C1—N1—C8 | −0.23 (16) |
C1—C6—C7—C8 | −0.29 (17) | C2—C1—N1—C10 | −0.1 (3) |
C5—C6—C7—C9 | 0.0 (3) | C6—C1—N1—C10 | −179.32 (15) |
C1—C6—C7—C9 | −179.90 (14) | O1—C9—O2—C12 | 2.7 (2) |
C6—C7—C8—N1 | 0.15 (18) | C7—C9—O2—C12 | −177.03 (13) |
C9—C7—C8—N1 | 179.76 (14) | C13—C12—O2—C9 | −177.54 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O3i | 0.93 | 2.61 | 3.296 (2) | 131 |
C5—H5···O1ii | 0.93 | 2.64 | 3.273 (2) | 125 |
C12—H12B···Cg1iii | 0.96 | 2.95 | 3.618 (3) | 127 |
C13—H13B···Cg2iii | 0.96 | 2.78 | 3.587 (3) | 142 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x, −y+1, −z+2; (iii) −x, −y+2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C13H13NO3 |
Mr | 231.24 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 7.519 (1), 8.479 (1), 10.187 (2) |
α, β, γ (°) | 97.38 (1), 95.78 (2), 114.28 (1) |
V (Å3) | 578.58 (15) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.51 × 0.41 × 0.20 |
Data collection | |
Diffractometer | Siemens P4 diffractometer |
Absorption correction | Multi-scan [XSCANS (Siemens 1996) and XPREP (Siemens, 1994)] |
Tmin, Tmax | 0.823, 0.981 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2536, 2027, 1696 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.120, 1.09 |
No. of reflections | 2027 |
No. of parameters | 155 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.17, −0.18 |
Computer programs: XSCANS (Siemens, 1996), XPREP (Siemens 1994) and SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O3i | 0.93 | 2.61 | 3.296 (2) | 131 |
C5—H5···O1ii | 0.93 | 2.64 | 3.273 (2) | 125 |
C12—H12B···Cg1iii | 0.96 | 2.95 | 3.618 (3) | 127 |
C13—H13B···Cg2iii | 0.96 | 2.78 | 3.587 (3) | 142 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x, −y+1, −z+2; (iii) −x, −y+2, −z+2. |
Acknowledgements
TAS acknowledges the College of Arts and Science at TSU for release time.
References
Ager, D. J. & Laneman, S. (2004). Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions, edited by H. U. Blaser & E. Schmidt, p. 30. Weinheim: WILEY-VCH Verlag GmbH & Co KGaA. Google Scholar
Amir-Heidari, B., Thirlway, J. & Micklefield, J. (2007). Org. Lett. 9, 1513–1516. Web of Science CrossRef PubMed CAS Google Scholar
Carlier, P. R., Lam, P. C.-H. & Wong, D. M. (2002). J. Org. Chem. 67, 6256–6259. Web of Science CrossRef PubMed CAS Google Scholar
Hellmann, H., Teichmann, K. & Lingens, F. (1958). Chem. Ber. 91, 2427–2431. CrossRef CAS Web of Science Google Scholar
Hengartner, U., Valentine, D. Jr, Johnson, K. K., Larscheid, M. E., Pigott, F., Scheidl, F., Scott, J. W., Sun, R. C., Townsend, J. M. & Williams, T. H. (1979). J. Org. Chem. 44, 3741–3747. CrossRef CAS Web of Science Google Scholar
Ma, C., Liu, X., Li, X., Flippen-Anderson, J., Yu, S. & Cook, J. M. (2001). J. Org. Chem. 66, 4525–4542. Web of Science CSD CrossRef PubMed CAS Google Scholar
Moriya, T., Hagio, K. & Yoneda, N. (1980). Chem. Pharm. Bull. 28, 1711–1721. CrossRef CAS Google Scholar
Reimann, E., Hassler, T. & Lotter, H. (1990). Arch. Pharm. 323, 255–258. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1994). XPREP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Zhao, S., Liao, X. & Cook, J. M. (2002). Org. Lett. 4, 687–690. Web of Science CrossRef PubMed CAS Google Scholar
Zhao, S., Smith, K. S., Deveau, A. M., Dieckhaus, C. M., Johnson, M. A., Macdonald, T. L. & Cook, J. M. (2002). J. Med. Chem. 45, 1559–1562. Web of Science CrossRef PubMed CAS Google Scholar
Zhou, H., Liao, X., Yin, W., Ma, J. & Cook, J. M. (2006). J. Org. Chem. 71, 251–259. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Indole substituted at 3-position leads to variety of compounds that are precursors to biologically active important alkaloids. One of the most important compounds of this type is tryptophan, which possesses anticancerous, antimalarial, antiamoebic, and antihypertensive activities (Ma et al., 2001; Zhou et al., 2006; Zhao, Smith et al. 2002; Zhao, Liao, & Cook, 2002). α,β-Dehydroaminoacid esters (e.g. 1, Fig. 1) are precursors to synthesizing tryptophan derivatives, which upon hydrogenation yield optically active tryptophan and its analogues (Ager & Laneman, 2004).
α,β-Dehydroamino acid esters were also synthesized using Erlenmeyer condensation (Amir-Heidari et al., 2007), Schmidt olefinations (Carlier et al., 2002), condensation of indole aldehyde with acetylamino malonic acid ester (Hengartner et al., 1979), and Knoevenagel-type condensation (Moriya et al. 1980). One such effort to synthesize hydroxyl dehydrotryptophan (3) from indoleester (1) using mono acid malonic ester (2) and aceticanhydride-pyridine mixture (Fig. 1) proved to be unsuccessful. The reaction resulted in 1H-indole-3-carboxylic acid-N-acetylethyl ester (4) instead. We rationalize that it is the electron withdrawing effect of the ester group which increases the acidity of the molecule. Consequently, in presence of a base, like pyridine, deprotonation and introduction of an acylium ion may occur. In this article we report the crystal structure of this compound.
The structure of the title compound is shown in Figure 2. The aromatic ring system of the molecule is essentially planar, but also the saturated ethyl group is located within this plane and the overall r.m.s. deviation from planarity is only 0.034 Å. Pairs of C—H···O interactions connect molecules into chains along the diagonal of the unit cell (Fig. 3). Molecules form weakly connected dimers via π···π stacking interactions of the indole rings with centroid to centroid distances of 3.571 (1) Å [symmetry operator for the second indole ring: (iii) 1 - x, 2 - y, 2 - z]. C—H···π interactions between methylene and methyl groups and the indole and benzene ring complete the range of intermolecular interactions [C12—H12B···Cg1iii = 2.95 Å, X—H···Cg1iii = 127°, X···Cg1iii = 3.618 (3) Å; C13—H13B···Cg2iii = 2.78 Å, X—H···Cg2iii = 142°, X···Cg2iii = 3.587 (3) Å; Cg1 and Cg2 are the centroids of the indole and the benzene rings, respectively].