organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1802-o1803

Ethyl 1-acetyl-1H-indole-3-carboxyl­ate

aDepartment of Chemistry, Boswell Science Complex, Tennessee State University, Nashville, 3500 John A Merritt Blvd, Nashville, TN 37209, USA, bDepartment of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N Cramer Street, Milwaukee, WI 53211, USA, and cYoungstown State University, Department of Chemistry, One University Plaza, Youngstown Ohio 44555-3663, USA
*Correspondence e-mail: tsiddiqu@tnstate.edu

(Received 11 June 2009; accepted 1 July 2009; online 8 July 2009)

The title compound, C13H13NO3, was synthesized by acetyl­ation of ethyl 1H-indole-3-carboxyl­ate. The aromatic ring system of the mol­ecule is essentially planar, but the saturated ethyl group is also located within this plane and the overall r.m.s. deviation from planarity is only 0.034 Å. Pairs of C—H⋯O inter­actions connect mol­ecules into chains along the diagonal of the unit cell. Mol­ecules also form weakly connected dimers via ππ stacking inter­actions of the indole rings with centroid–centroid separations of 3.571 (1) Å. C—H⋯π inter­actions between methyl­ene and methyl groups and the indole and benzene ring complete the directional inter­molecular inter­actions found in the crystal structure.

Related literature

For the biological properties of tryptophan derivatives, see: Ma et al. (2001[Ma, C., Liu, X., Li, X., Flippen-Anderson, J., Yu, S. & Cook, J. M. (2001). J. Org. Chem. 66, 4525-4542.]); Zhou et al. (2006[Zhou, H., Liao, X., Yin, W., Ma, J. & Cook, J. M. (2006). J. Org. Chem. 71, 251-259.]); Zhao, Smith et al. (2002[Zhao, S., Smith, K. S., Deveau, A. M., Dieckhaus, C. M., Johnson, M. A., Macdonald, T. L. & Cook, J. M. (2002). J. Med. Chem. 45, 1559-1562.]); Zhao, Liao & Cook (2002[Zhao, S., Liao, X. & Cook, J. M. (2002). Org. Lett. 4, 687-690.]). For synthetic procedures towards tryptophan-like compounds, see: Ager & Laneman (2004[Ager, D. J. & Laneman, S. (2004). Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions, edited by H. U. Blaser & E. Schmidt, p. 30. Weinheim: WILEY-VCH Verlag GmbH & Co KGaA.]); Amir-Heidari et al. (2007[Amir-Heidari, B., Thirlway, J. & Micklefield, J. (2007). Org. Lett. 9, 1513-1516.]); Carlier et al. (2002[Carlier, P. R., Lam, P. C.-H. & Wong, D. M. (2002). J. Org. Chem. 67, 6256-6259.]); Hengartner et al. (1979[Hengartner, U., Valentine, D. Jr, Johnson, K. K., Larscheid, M. E., Pigott, F., Scheidl, F., Scott, J. W., Sun, R. C., Townsend, J. M. & Williams, T. H. (1979). J. Org. Chem. 44, 3741-3747.]); Moriya et al. (1980[Moriya, T., Hagio, K. & Yoneda, N. (1980). Chem. Pharm. Bull. 28, 1711-1721.]). For the synthesis of 2-acetamido-3-eth­oxy-3-oxopropanoic acid, see: Hellmann et al. (1958[Hellmann, H., Teichmann, K. & Lingens, F. (1958). Chem. Ber. 91, 2427-2431.]). For NMR data for the title compound, see: Reimann et al. (1990[Reimann, E., Hassler, T. & Lotter, H. (1990). Arch. Pharm. 323, 255-258.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13NO3

  • Mr = 231.24

  • Triclinic, [P \overline 1]

  • a = 7.519 (1) Å

  • b = 8.479 (1) Å

  • c = 10.187 (2) Å

  • α = 97.38 (1)°

  • β = 95.78 (2)°

  • γ = 114.28 (1)°

  • V = 578.58 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.51 × 0.41 × 0.20 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: multi-scan [XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) and XPREP (Siemens, 1994[Siemens (1994). XPREP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.])] Tmin = 0.823, Tmax = 0.981

  • 2536 measured reflections

  • 2027 independent reflections

  • 1696 reflections with I > 2σ(I)

  • Rint = 0.019

  • 3 standard reflections every 97 reflections intensity decay: <1%

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.120

  • S = 1.09

  • 2027 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3i 0.93 2.61 3.296 (2) 131
C5—H5⋯O1ii 0.93 2.64 3.273 (2) 125
C12—H12BCg1iii 0.96 2.95 3.618 (3) 127
C13—H13BCg2iii 0.96 2.78 3.587 (3) 142
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+1, -z+2; (iii) -x, -y+2, -z+2. Cg1 is the centroid of the N1,C1,C6–C8 pyrrole ring and Cg2 is the centroid of the C1–C6 phenyl ring.

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: XPREP (Siemens 1994[Siemens (1994). XPREP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Indole substituted at 3-position leads to variety of compounds that are precursors to biologically active important alkaloids. One of the most important compounds of this type is tryptophan, which possesses anticancerous, antimalarial, antiamoebic, and antihypertensive activities (Ma et al., 2001; Zhou et al., 2006; Zhao, Smith et al. 2002; Zhao, Liao, & Cook, 2002). α,β-Dehydroaminoacid esters (e.g. 1, Fig. 1) are precursors to synthesizing tryptophan derivatives, which upon hydrogenation yield optically active tryptophan and its analogues (Ager & Laneman, 2004).

α,β-Dehydroamino acid esters were also synthesized using Erlenmeyer condensation (Amir-Heidari et al., 2007), Schmidt olefinations (Carlier et al., 2002), condensation of indole aldehyde with acetylamino malonic acid ester (Hengartner et al., 1979), and Knoevenagel-type condensation (Moriya et al. 1980). One such effort to synthesize hydroxyl dehydrotryptophan (3) from indoleester (1) using mono acid malonic ester (2) and aceticanhydride-pyridine mixture (Fig. 1) proved to be unsuccessful. The reaction resulted in 1H-indole-3-carboxylic acid-N-acetylethyl ester (4) instead. We rationalize that it is the electron withdrawing effect of the ester group which increases the acidity of the molecule. Consequently, in presence of a base, like pyridine, deprotonation and introduction of an acylium ion may occur. In this article we report the crystal structure of this compound.

The structure of the title compound is shown in Figure 2. The aromatic ring system of the molecule is essentially planar, but also the saturated ethyl group is located within this plane and the overall r.m.s. deviation from planarity is only 0.034 Å. Pairs of C—H···O interactions connect molecules into chains along the diagonal of the unit cell (Fig. 3). Molecules form weakly connected dimers via π···π stacking interactions of the indole rings with centroid to centroid distances of 3.571 (1) Å [symmetry operator for the second indole ring: (iii) 1 - x, 2 - y, 2 - z]. C—H···π interactions between methylene and methyl groups and the indole and benzene ring complete the range of intermolecular interactions [C12—H12B···Cg1iii = 2.95 Å, X—H···Cg1iii = 127°, X···Cg1iii = 3.618 (3) Å; C13—H13B···Cg2iii = 2.78 Å, X—H···Cg2iii = 142°, X···Cg2iii = 3.587 (3) Å; Cg1 and Cg2 are the centroids of the indole and the benzene rings, respectively].

Related literature top

For the biological properties of tryptophan derivatives, see: Ma et al. (2001); Zhou et al. (2006); Zhao, Smith et al. (2002); Zhao, Liao & Cook (2002) . For synthetic procedures towards tryptophan-like compounds, see: Ager & Laneman (2004); Amir-Heidari et al. (2007); Carlier et al. (2002); Hengartner et al. (1979); Moriya et al. (1980). For the synthesis of 2-acetamido-3-ethoxy-3-oxopropanoic acid, see: Hellmann et al. (1958). For NMR data for the title compound, see: Reimann et al. (1990).

Experimental top

2-Acetamido-3-ethoxy-3-oxopropanoic acid (one of the starting materials) was prepared from acetylamino malonic acid diethylester following the process developed by Hellmann et al. (1958). The title compound was prepared as follows: to a mixture of 0.37 g (1.97 mmol) of the indole ester ethyl 1H-indole-3-carboxylate, 1.1 g (5.9 mmol) of 2-acetamido-3-ethoxy-3-oxopropanoic acid, and 4.54 ml of pyridine was added at 288 K (15 °C) over 15 minutes 1.6 ml of acetic anhydride. The reaction mixture turned yellow and was stirred at 333 K (60 °C) for 3 h. An additional 0.18 g (0.9 mmol) of ethyl acetamido malonate was added and stirring was continued for 22 h. Ice (10 ml) was added, and the mixture was stirred for 2 h and then diluted with 20 ml of water. The resulting solution was extracted with EtOAc (2 × 20 ml), the combined organic layer was dried with anhydrous Na2SO4 and the solvent was removed under reduced pressure. 0.4 g (99%) of 1H-indole-3-carboxylicacid-N-acetyl ethyl ester was isolated. 1HNMR CDCl3 δ (p.p.m.): 8.70–8.50 (m,1H and 2H), 7.60–7.30 (m, 2H), 4.45 (q, J = 7 Hz, OCH2CH3), 2.70 (s, COCH3), 1.45 (t, J = 7 Hz, OCH2CH3). The NMR data agree with those reported previously (Reimann et al., 1990). Crystals suitable for X-ray structural analysis were obtained by recrystallization form ethanol in a refrigerator.

Refinement top

All hydrogen atoms were added in calculated positions with a C—H bond distances of 0.97 (methylene), 0.93 (aromatic) and 0.96 Å (methyl). They were refined with isotropic displacement parameters Uiso of 1.5 (methyl) or 1.2 times Ueq (all others) of the adjacent carbon atom.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: XPREP (Siemens 1994) and SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Synthesis of the title compound (4).
[Figure 2] Fig. 2. Thermal ellipsoid plot of the title compound with the atom labeling scheme. Displacement ellipsoids are shown at the 50% probability level and H atoms are shown as capped sticks.
[Figure 3] Fig. 3. Packing view of the title compound showing C—H···O interactions (blue lines).
Ethyl 1-acetyl-1H-indole-3-carboxylate top
Crystal data top
C13H13NO3Z = 2
Mr = 231.24F(000) = 244
Triclinic, P1Dx = 1.327 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.519 (1) ÅCell parameters from 23 reflections
b = 8.479 (1) Åθ = 3.7–11.4°
c = 10.187 (2) ŵ = 0.10 mm1
α = 97.38 (1)°T = 296 K
β = 95.78 (2)°Block, colourless
γ = 114.28 (1)°0.51 × 0.41 × 0.20 mm
V = 578.58 (15) Å3
Data collection top
Siemens P4
diffractometer
1696 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
2θ/ω scansh = 81
Absorption correction: multi-scan
[XSCANS (Siemens 1996) and XPREP (Siemens, 1994)]
k = 99
Tmin = 0.823, Tmax = 0.981l = 1212
2536 measured reflections3 standard reflections every 97 reflections
2027 independent reflections intensity decay: <1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0647P)2 + 0.0738P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2027 reflectionsΔρmax = 0.17 e Å3
155 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXTL (Bruker, 2003; Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.103 (12)
Primary atom site location: structure-invariant direct methods
Crystal data top
C13H13NO3γ = 114.28 (1)°
Mr = 231.24V = 578.58 (15) Å3
Triclinic, P1Z = 2
a = 7.519 (1) ÅMo Kα radiation
b = 8.479 (1) ŵ = 0.10 mm1
c = 10.187 (2) ÅT = 296 K
α = 97.38 (1)°0.51 × 0.41 × 0.20 mm
β = 95.78 (2)°
Data collection top
Siemens P4
diffractometer
1696 reflections with I > 2σ(I)
Absorption correction: multi-scan
[XSCANS (Siemens 1996) and XPREP (Siemens, 1994)]
Rint = 0.019
Tmin = 0.823, Tmax = 0.9813 standard reflections every 97 reflections
2536 measured reflections intensity decay: <1%
2027 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.09Δρmax = 0.17 e Å3
2027 reflectionsΔρmin = 0.18 e Å3
155 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3179 (2)0.9158 (2)0.76860 (15)0.0474 (4)
C20.3276 (2)0.8319 (2)0.64495 (16)0.0560 (4)
H20.39260.89520.58260.067*
C30.2364 (3)0.6502 (2)0.61896 (18)0.0641 (5)
H30.24020.58980.53710.077*
C40.1394 (3)0.5554 (2)0.71141 (19)0.0658 (5)
H40.08040.43300.69070.079*
C50.1286 (3)0.6392 (2)0.83389 (17)0.0572 (4)
H50.06290.57470.89550.069*
C60.2186 (2)0.8227 (2)0.86285 (15)0.0477 (4)
C70.2359 (2)0.9517 (2)0.97738 (15)0.0477 (4)
C80.3421 (2)1.1130 (2)0.95024 (15)0.0491 (4)
H80.37471.21891.00770.059*
C90.1539 (2)0.9133 (2)1.10037 (16)0.0526 (4)
C100.5038 (3)1.2371 (2)0.76197 (16)0.0563 (4)
C110.5648 (3)1.4194 (3)0.8383 (2)0.0756 (6)
H11A0.63921.43360.92480.113*
H11B0.44911.43770.84970.113*
H11C0.64521.50370.78940.113*
C120.1351 (3)1.0333 (3)1.31867 (17)0.0613 (5)
H12A0.19500.96831.36340.074*
H12B0.00760.96671.30450.074*
C130.1950 (3)1.2107 (3)1.40273 (18)0.0724 (5)
H13A0.15081.19701.48750.109*
H13B0.13611.27431.35720.109*
H13C0.33661.27471.41750.109*
N10.39555 (19)1.09788 (17)0.82406 (12)0.0489 (4)
O10.0559 (3)0.76795 (18)1.11828 (14)0.0845 (5)
O20.20161 (17)1.05915 (15)1.19112 (11)0.0559 (3)
O30.5434 (2)1.20764 (19)0.65295 (13)0.0814 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0485 (8)0.0506 (9)0.0420 (8)0.0226 (7)0.0046 (6)0.0028 (6)
C20.0594 (10)0.0612 (10)0.0452 (9)0.0262 (8)0.0100 (7)0.0006 (7)
C30.0707 (11)0.0617 (11)0.0531 (10)0.0282 (9)0.0083 (8)0.0092 (8)
C40.0744 (11)0.0493 (10)0.0660 (11)0.0245 (9)0.0072 (9)0.0049 (8)
C50.0631 (10)0.0494 (9)0.0552 (10)0.0216 (8)0.0084 (8)0.0070 (7)
C60.0492 (8)0.0497 (8)0.0437 (8)0.0231 (7)0.0043 (6)0.0036 (7)
C70.0521 (8)0.0502 (9)0.0419 (8)0.0239 (7)0.0077 (6)0.0062 (7)
C80.0569 (9)0.0503 (9)0.0405 (8)0.0245 (7)0.0102 (6)0.0032 (6)
C90.0617 (9)0.0541 (10)0.0467 (9)0.0283 (8)0.0122 (7)0.0108 (7)
C100.0656 (10)0.0570 (10)0.0478 (9)0.0254 (8)0.0155 (7)0.0131 (7)
C110.0980 (15)0.0525 (11)0.0726 (12)0.0247 (10)0.0284 (11)0.0146 (9)
C120.0718 (11)0.0789 (12)0.0442 (9)0.0395 (10)0.0208 (8)0.0160 (8)
C130.0812 (13)0.0925 (14)0.0491 (10)0.0451 (11)0.0156 (9)0.0023 (9)
N10.0562 (8)0.0484 (7)0.0406 (7)0.0215 (6)0.0105 (5)0.0044 (5)
O10.1286 (12)0.0546 (8)0.0692 (9)0.0304 (8)0.0424 (8)0.0197 (6)
O20.0660 (7)0.0586 (7)0.0430 (6)0.0256 (6)0.0172 (5)0.0069 (5)
O30.1158 (11)0.0731 (9)0.0556 (8)0.0346 (8)0.0377 (7)0.0162 (7)
Geometric parameters (Å, º) top
C1—C21.389 (2)C9—O11.197 (2)
C1—C61.399 (2)C9—O21.3367 (19)
C1—N11.4186 (19)C10—O31.201 (2)
C2—C31.379 (2)C10—N11.400 (2)
C2—H20.9300C10—C111.497 (3)
C3—C41.384 (3)C11—H11A0.9600
C3—H30.9300C11—H11B0.9600
C4—C51.381 (2)C11—H11C0.9600
C4—H40.9300C12—O21.449 (2)
C5—C61.393 (2)C12—C131.494 (3)
C5—H50.9300C12—H12A0.9700
C6—C71.449 (2)C12—H12B0.9700
C7—C81.352 (2)C13—H13A0.9600
C7—C91.467 (2)C13—H13B0.9600
C8—N11.391 (2)C13—H13C0.9600
C8—H80.9300
C2—C1—C6122.32 (15)O2—C9—C7112.43 (14)
C2—C1—N1130.20 (15)O3—C10—N1120.26 (16)
C6—C1—N1107.48 (13)O3—C10—C11123.11 (16)
C3—C2—C1116.89 (17)N1—C10—C11116.63 (15)
C3—C2—H2121.6C10—C11—H11A109.5
C1—C2—H2121.6C10—C11—H11B109.5
C2—C3—C4121.75 (17)H11A—C11—H11B109.5
C2—C3—H3119.1C10—C11—H11C109.5
C4—C3—H3119.1H11A—C11—H11C109.5
C5—C4—C3121.27 (17)H11B—C11—H11C109.5
C5—C4—H4119.4O2—C12—C13107.88 (15)
C3—C4—H4119.4O2—C12—H12A110.1
C4—C5—C6118.33 (17)C13—C12—H12A110.1
C4—C5—H5120.8O2—C12—H12B110.1
C6—C5—H5120.8C13—C12—H12B110.1
C5—C6—C1119.44 (14)H12A—C12—H12B108.4
C5—C6—C7133.47 (15)C12—C13—H13A109.5
C1—C6—C7107.10 (14)C12—C13—H13B109.5
C8—C7—C6107.50 (14)H13A—C13—H13B109.5
C8—C7—C9126.52 (15)C12—C13—H13C109.5
C6—C7—C9125.98 (15)H13A—C13—H13C109.5
C7—C8—N1110.33 (14)H13B—C13—H13C109.5
C7—C8—H8124.8C8—N1—C10126.27 (14)
N1—C8—H8124.8C8—N1—C1107.60 (13)
O1—C9—O2123.51 (15)C10—N1—C1126.12 (13)
O1—C9—C7124.06 (16)C9—O2—C12116.25 (13)
C6—C1—C2—C30.9 (2)C8—C7—C9—O1177.82 (17)
N1—C1—C2—C3179.95 (15)C6—C7—C9—O12.6 (3)
C1—C2—C3—C40.1 (3)C8—C7—C9—O22.5 (2)
C2—C3—C4—C50.5 (3)C6—C7—C9—O2177.09 (13)
C3—C4—C5—C60.2 (3)C7—C8—N1—C10179.14 (15)
C4—C5—C6—C10.6 (2)C7—C8—N1—C10.04 (17)
C4—C5—C6—C7179.54 (17)O3—C10—N1—C8179.02 (16)
C2—C1—C6—C51.2 (2)C11—C10—N1—C81.0 (3)
N1—C1—C6—C5179.57 (13)O3—C10—N1—C12.1 (3)
C2—C1—C6—C7178.95 (14)C11—C10—N1—C1177.96 (15)
N1—C1—C6—C70.31 (16)C2—C1—N1—C8178.95 (16)
C5—C6—C7—C8179.58 (17)C6—C1—N1—C80.23 (16)
C1—C6—C7—C80.29 (17)C2—C1—N1—C100.1 (3)
C5—C6—C7—C90.0 (3)C6—C1—N1—C10179.32 (15)
C1—C6—C7—C9179.90 (14)O1—C9—O2—C122.7 (2)
C6—C7—C8—N10.15 (18)C7—C9—O2—C12177.03 (13)
C9—C7—C8—N1179.76 (14)C13—C12—O2—C9177.54 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.932.613.296 (2)131
C5—H5···O1ii0.932.643.273 (2)125
C12—H12B···Cg1iii0.962.953.618 (3)127
C13—H13B···Cg2iii0.962.783.587 (3)142
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z+2; (iii) x, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC13H13NO3
Mr231.24
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.519 (1), 8.479 (1), 10.187 (2)
α, β, γ (°)97.38 (1), 95.78 (2), 114.28 (1)
V3)578.58 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.51 × 0.41 × 0.20
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionMulti-scan
[XSCANS (Siemens 1996) and XPREP (Siemens, 1994)]
Tmin, Tmax0.823, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
2536, 2027, 1696
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.120, 1.09
No. of reflections2027
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.18

Computer programs: XSCANS (Siemens, 1996), XPREP (Siemens 1994) and SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.932.613.296 (2)131
C5—H5···O1ii0.932.643.273 (2)125
C12—H12B···Cg1iii0.962.953.618 (3)127
C13—H13B···Cg2iii0.962.783.587 (3)142
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z+2; (iii) x, y+2, z+2.
 

Acknowledgements

TAS acknowledges the College of Arts and Science at TSU for release time.

References

First citationAger, D. J. & Laneman, S. (2004). Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions, edited by H. U. Blaser & E. Schmidt, p. 30. Weinheim: WILEY-VCH Verlag GmbH & Co KGaA.  Google Scholar
First citationAmir-Heidari, B., Thirlway, J. & Micklefield, J. (2007). Org. Lett. 9, 1513–1516.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCarlier, P. R., Lam, P. C.-H. & Wong, D. M. (2002). J. Org. Chem. 67, 6256–6259.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHellmann, H., Teichmann, K. & Lingens, F. (1958). Chem. Ber. 91, 2427–2431.  CrossRef CAS Web of Science Google Scholar
First citationHengartner, U., Valentine, D. Jr, Johnson, K. K., Larscheid, M. E., Pigott, F., Scheidl, F., Scott, J. W., Sun, R. C., Townsend, J. M. & Williams, T. H. (1979). J. Org. Chem. 44, 3741–3747.  CrossRef CAS Web of Science Google Scholar
First citationMa, C., Liu, X., Li, X., Flippen-Anderson, J., Yu, S. & Cook, J. M. (2001). J. Org. Chem. 66, 4525–4542.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoriya, T., Hagio, K. & Yoneda, N. (1980). Chem. Pharm. Bull. 28, 1711–1721.  CrossRef CAS Google Scholar
First citationReimann, E., Hassler, T. & Lotter, H. (1990). Arch. Pharm. 323, 255–258.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XPREP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationZhao, S., Liao, X. & Cook, J. M. (2002). Org. Lett. 4, 687–690.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhao, S., Smith, K. S., Deveau, A. M., Dieckhaus, C. M., Johnson, M. A., Macdonald, T. L. & Cook, J. M. (2002). J. Med. Chem. 45, 1559–1562.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhou, H., Liao, X., Yin, W., Ma, J. & Cook, J. M. (2006). J. Org. Chem. 71, 251–259.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1802-o1803
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds