organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

13-Eth­oxy­carbonyl-16-(1-methyl­ethyl)-17,19-dinoratis-15-ene-4,14-di­carboxylic acid monohydrate: a new derivative of maleopimaric acid

aInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, People's Republic of China
*Correspondence e-mail: zm205@sohu.com

(Received 15 June 2009; accepted 17 July 2009; online 22 July 2009)

The title compound, C26H38O6·H2O, is a mono-ester of a derivative of maleopimaric acid, an abietic-type acid. The two fused and unbridged cyclo­hexane rings adopt approximate chair conformations while the three other three six-membered rings have boat conformations.

Related literature

Abietic type resin acid, the major component of gum rosin, is a high quality biomass resource for the development of new chiral drugs, see: McCoy (2000[McCoy, M. (2000). Chem. Eng. News, 78, 13-15.]); Schweizer et al. (2003[Schweizer, R. A. S., Atanasov, A. G., Frey, B. M. & Odermatt, A. (2003). Molec. Cellular Endocrinol. 212, 41-49.]). For the use of abietic acid and its derivatives in the design and synthesis of industrially and physiologically important products, see: Savluchinske-Feio et al. (2007[Savluchinske-Feio, S., Nunes, L., Pereira, P. T., Silva, A. M., Roseiro, J. C., Gigante, B. & Marcelo Curto, M. J. (2007). J. Microbiol. Methods, 70, 465-470.]). For the structures of other maleopimaric acid derivatives, see: Li et al. (2005[Li, Y.-H., Ren, T.-R., Guo, J.-P. & Liu, J.-C. (2005). Acta Cryst. E61, o4305-o4306.]); Pan et al. (2006[Pan, Y.-M., Yang, L., Wang, H.-S., Zhao, Z.-C. & Zhang, Y. (2006). Acta Cryst. E62, o5701-o5703.]); Rao et al. (2006[Rao, X.-P., Song, Z.-Q., Radbil, B. & Radbil, A. (2006). Acta Cryst. E62, o5301-o5302.]).

[Scheme 1]

Experimental

Crystal data
  • C26H38O6·H2O

  • Mr = 464.58

  • Orthorhombic, P 21 21 21

  • a = 7.3406 (14) Å

  • b = 17.901 (4) Å

  • c = 19.681 (4) Å

  • V = 2586.2 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 291 K

  • 0.26 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.98, Tmax = 0.98

  • 14084 measured reflections

  • 2892 independent reflections

  • 2318 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.113

  • S = 1.08

  • 2892 reflections

  • 303 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Rosin, a versatile natural resin, possesses a rare combination of many desirable properties and has consequently found innumerable industrial uses in a modified form or in conjunction with other natural or synthetic resins. Abietic type resin acid is the major component of gum rosin, including abietic acid, neoabietic acid, levo-pimaric acid, palustric acid, and is a high quality biomass resource in developing chiral new drug (McCoy, 2000; Schweizer et al., 2003).

Abietic acid and its derivatives are readily available hydrophenanthrene compounds which become useful starting materials for the design and synthesis of industrially and physiologically important productions (Savluchinske-Feio et al., 2007). The crystal structures of other derivatives of maleopimaric acid have already been published (Rao et al., 2006; Li et al., 2005; Pan et al., 2006).

The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit consists of two molecules, viz. maleopimaric ester derivative and one lattice water molecule. The cyclohexane rings C2···C5/C10/C11 and C1/C2/C11···C14 have typical chair forms. The cyclohexane ring C5···C10 has a slightly distorted boat conformation; the other two six-membered rings adopt boat conformations. The configuration about the C17C18 bond is Z (Fig. 1), with the H atom and the isopropyl group cis with respect to each other. The bond lengths and angles have normal values.

In the crystal structure, the molecules are linked (Fig. 2) by O—H···O and C—H···O intermolecular hydrogen bonds.

Related literature top

Abietic type resin acid, the major component of gum rosin, is a high quality biomass resource in the development of new chiral drugs, see: McCoy (2000); Schweizer et al. (2003). For the use of abietic acid and its derivatives in the design and synthesis of industrially and physiologically important products, see: Savluchinske-Feio et al. (2007). For the structures of other maleopimaric acid derivatives, see: Li et al. (2005); Pan et al. (2006); Rao et al. (2006).

Experimental top

Abietic acid (30.2 g), acetic acid (20 ml), and maleic acid ethyl ester (14.4 g) were put into a 100-ml three-necked flask and magnetically stirred; the mixture was stirred for 25 min. The solution was then put into 5 ml of glacial acetic acid and cooled, washed with hot water (10 ml), dried (MgSO4), and concentrated to dryness. Recrystallization from ethanol (95%) afforded the adduct (33.9 g, 73%).

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.98 Å, and O—H distances of 0.85 Å, with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing displacement ellipsoids at the 30% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of the title compound, viewed along the a axis. Dashed lines indicate hydrogen bonds.
13-Ethoxycarbonyl-16-(1-methylethyl)-17,19-dinoratis-15-ene-4,14- dicarboxylic acid monohydrate top
Crystal data top
C26H38O6·H2ODx = 1.193 Mg m3
Mr = 464.58Melting point: 412 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2351 reflections
a = 7.3406 (14) Åθ = 2.4–23.1°
b = 17.901 (4) ŵ = 0.09 mm1
c = 19.681 (4) ÅT = 291 K
V = 2586.2 (9) Å3Aciculae, colorless
Z = 40.26 × 0.22 × 0.20 mm
F(000) = 1008
Data collection top
Bruker SMART APEX CCD
diffractometer
2892 independent reflections
Radiation source: sealed tube2318 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
ϕ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 89
Tmin = 0.98, Tmax = 0.98k = 2122
14084 measured reflectionsl = 1124
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.04P)2 + 0.66P]
where P = (Fo2 + 2Fc2)/3
2892 reflections(Δ/σ)max < 0.001
303 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.22 e Å3
0 constraints
Crystal data top
C26H38O6·H2OV = 2586.2 (9) Å3
Mr = 464.58Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.3406 (14) ŵ = 0.09 mm1
b = 17.901 (4) ÅT = 291 K
c = 19.681 (4) Å0.26 × 0.22 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2892 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2318 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 0.98Rint = 0.076
14084 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.08Δρmax = 0.19 e Å3
2892 reflectionsΔρmin = 0.22 e Å3
303 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1062 (5)0.27241 (19)0.17771 (18)0.0339 (8)
C20.1205 (5)0.18852 (19)0.16317 (18)0.0321 (8)
H20.08010.16430.20520.039*
C30.3180 (5)0.1612 (2)0.1530 (2)0.0386 (9)
H3A0.36050.17550.10820.046*
H3B0.39680.18450.18640.046*
C40.3272 (5)0.0766 (2)0.1604 (2)0.0377 (9)
H4A0.30050.06360.20720.045*
H4B0.45050.06030.15070.045*
C50.1958 (5)0.03398 (19)0.11385 (18)0.0330 (8)
C60.1724 (6)0.0481 (2)0.14105 (18)0.0378 (9)
H60.11390.04550.18580.045*
C70.0419 (5)0.0908 (2)0.0922 (2)0.0382 (9)
H70.06920.10110.11820.046*
C80.0146 (5)0.0396 (2)0.03338 (19)0.0406 (9)
H80.09070.06690.00090.049*
C90.1211 (5)0.0256 (2)0.06435 (19)0.0416 (9)
H9A0.22770.00660.08780.050*
H9B0.16210.05870.02840.050*
C100.0003 (5)0.07016 (19)0.11538 (19)0.0339 (8)
H100.04910.05970.16070.041*
C110.0061 (5)0.1561 (2)0.10698 (18)0.0360 (8)
C120.2015 (5)0.1820 (2)0.1218 (2)0.0411 (9)
H12A0.24430.15760.16290.049*
H12B0.27990.16650.08480.049*
C130.2173 (5)0.2672 (2)0.1309 (2)0.0426 (9)
H13A0.18190.29180.08910.051*
H13B0.34300.28020.14040.051*
C140.0966 (5)0.2947 (2)0.1888 (2)0.0394 (9)
H14A0.13940.27370.23130.047*
H14B0.10570.34870.19190.047*
C150.1951 (6)0.3238 (2)0.1237 (2)0.0407 (9)
H15A0.20850.37320.14200.061*
H15B0.11920.32560.08400.061*
H15C0.31270.30450.11170.061*
C160.0475 (6)0.1813 (2)0.03444 (19)0.0417 (9)
H16A0.01030.14940.00170.063*
H16B0.17730.17820.02930.063*
H16C0.00870.23190.02740.063*
C170.2593 (6)0.0286 (2)0.04130 (19)0.0388 (9)
H170.36660.05120.02680.047*
C180.1540 (5)0.01020 (19)0.00112 (19)0.0364 (8)
C190.1871 (5)0.0250 (2)0.07525 (19)0.0433 (10)
H190.16180.07800.08320.052*
C200.0537 (6)0.0199 (2)0.1194 (2)0.0452 (10)
H20A0.06700.01560.10100.068*
H20B0.05520.00070.16490.068*
H20C0.08950.07150.11970.068*
C210.3860 (6)0.0108 (2)0.0965 (2)0.0467 (10)
H21A0.41650.04060.08830.070*
H21B0.40010.02170.14400.070*
H21C0.46540.04240.07060.070*
C220.1092 (6)0.1652 (2)0.0662 (2)0.0415 (9)
C230.2168 (6)0.2869 (2)0.0970 (2)0.0429 (9)
H23A0.11860.31410.07520.051*
H23B0.31670.28250.06500.051*
C240.2779 (6)0.3275 (2)0.1586 (2)0.0447 (10)
H24A0.37750.30110.17920.067*
H24B0.31690.37690.14620.067*
H24C0.17890.33090.19040.067*
C250.1958 (5)0.2900 (2)0.24603 (19)0.0371 (8)
C260.3572 (5)0.0844 (2)0.1500 (2)0.0384 (9)
O10.2639 (4)0.35119 (14)0.25908 (13)0.0424 (7)
H1B0.34840.36020.23080.051*
O20.1860 (4)0.23935 (14)0.29190 (13)0.0423 (7)
O30.4065 (4)0.09128 (14)0.21215 (13)0.0436 (7)
O40.4538 (4)0.10191 (15)0.10165 (13)0.0409 (6)
H4D0.39780.13410.07780.049*
O50.1529 (4)0.21151 (13)0.11749 (13)0.0391 (6)
O60.1159 (3)0.18329 (13)0.00746 (14)0.0408 (6)
O70.2953 (4)0.28560 (15)0.40900 (13)0.0425 (6)
H7A0.29240.33070.42240.051*
H7B0.22380.25940.43330.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0347 (19)0.0271 (17)0.040 (2)0.0036 (16)0.0019 (17)0.0020 (15)
C20.0265 (18)0.0361 (19)0.0337 (19)0.0052 (15)0.0003 (16)0.0016 (16)
C30.0275 (19)0.040 (2)0.048 (2)0.0030 (16)0.0046 (18)0.0039 (17)
C40.0325 (19)0.037 (2)0.044 (2)0.0000 (16)0.0080 (17)0.0032 (17)
C50.0271 (18)0.0347 (19)0.037 (2)0.0018 (14)0.0040 (16)0.0036 (16)
C60.048 (2)0.038 (2)0.0274 (19)0.0047 (18)0.0051 (17)0.0015 (15)
C70.035 (2)0.0338 (19)0.045 (2)0.0025 (16)0.0062 (17)0.0028 (18)
C80.043 (2)0.042 (2)0.037 (2)0.0004 (17)0.0015 (19)0.0089 (18)
C90.036 (2)0.051 (2)0.037 (2)0.0026 (18)0.0058 (18)0.0076 (18)
C100.0252 (17)0.039 (2)0.038 (2)0.0000 (15)0.0017 (17)0.0099 (16)
C110.0354 (19)0.0377 (19)0.035 (2)0.0004 (16)0.0016 (18)0.0008 (16)
C120.0298 (19)0.049 (2)0.044 (2)0.0025 (17)0.0049 (17)0.0099 (19)
C130.035 (2)0.045 (2)0.048 (2)0.0020 (17)0.0037 (18)0.0020 (18)
C140.040 (2)0.037 (2)0.042 (2)0.0057 (17)0.0020 (18)0.0030 (17)
C150.041 (2)0.039 (2)0.042 (2)0.0034 (17)0.0019 (18)0.0011 (17)
C160.048 (2)0.039 (2)0.039 (2)0.0049 (18)0.0066 (18)0.0010 (17)
C170.041 (2)0.036 (2)0.040 (2)0.0054 (17)0.0039 (18)0.0010 (16)
C180.040 (2)0.0335 (19)0.0356 (19)0.0076 (16)0.0004 (17)0.0017 (17)
C190.042 (2)0.053 (2)0.035 (2)0.0143 (19)0.0014 (18)0.0017 (18)
C200.047 (2)0.046 (2)0.043 (2)0.0144 (18)0.0070 (19)0.0063 (18)
C210.054 (3)0.045 (2)0.041 (2)0.0068 (19)0.021 (2)0.0155 (19)
C220.048 (2)0.032 (2)0.044 (2)0.0064 (18)0.005 (2)0.0064 (17)
C230.038 (2)0.047 (2)0.044 (2)0.0031 (18)0.0079 (19)0.0003 (19)
C240.042 (2)0.046 (2)0.046 (2)0.0153 (19)0.0146 (19)0.0098 (18)
C250.038 (2)0.037 (2)0.0358 (19)0.0016 (17)0.0063 (17)0.0104 (17)
C260.045 (2)0.0295 (19)0.041 (2)0.0031 (17)0.0013 (18)0.0051 (16)
O10.0412 (15)0.0444 (15)0.0415 (15)0.0124 (13)0.0165 (13)0.0077 (12)
O20.0409 (15)0.0438 (15)0.0423 (14)0.0094 (12)0.0090 (13)0.0049 (12)
O30.0449 (16)0.0410 (14)0.0449 (16)0.0214 (13)0.0168 (13)0.0026 (12)
O40.0414 (15)0.0439 (16)0.0375 (15)0.0136 (12)0.0009 (12)0.0033 (12)
O50.0464 (15)0.0319 (13)0.0391 (14)0.0007 (12)0.0035 (12)0.0011 (11)
O60.0421 (15)0.0375 (14)0.0429 (15)0.0016 (12)0.0042 (13)0.0123 (12)
O70.0413 (15)0.0449 (15)0.0413 (15)0.0066 (12)0.0096 (12)0.0059 (13)
Geometric parameters (Å, º) top
C1—C251.530 (5)C14—H14A0.9700
C1—C21.532 (5)C14—H14B0.9700
C1—C151.550 (5)C15—H15A0.9600
C1—C141.557 (5)C15—H15B0.9600
C2—C31.543 (5)C15—H15C0.9600
C2—C111.557 (5)C16—H16A0.9600
C2—H20.9800C16—H16B0.9600
C3—C41.523 (5)C16—H16C0.9600
C3—H3A0.9700C17—C181.333 (5)
C3—H3B0.9700C17—H170.9300
C4—C51.533 (5)C18—C191.503 (5)
C4—H4A0.9700C19—C201.535 (5)
C4—H4B0.9700C19—C211.540 (6)
C5—C171.505 (5)C19—H190.9800
C5—C61.574 (5)C20—H20A0.9600
C5—C101.574 (5)C20—H20B0.9600
C6—C261.514 (5)C20—H20C0.9600
C6—C71.557 (5)C21—H21A0.9600
C6—H60.9800C21—H21B0.9600
C7—C221.510 (5)C21—H21C0.9600
C7—C81.534 (5)C22—O61.201 (4)
C7—H70.9800C22—O51.345 (5)
C8—C181.506 (5)C23—C241.484 (5)
C8—C91.532 (5)C23—O51.484 (5)
C8—H80.9800C23—H23A0.9700
C9—C101.562 (5)C23—H23B0.9700
C9—H9A0.9700C24—H24A0.9600
C9—H9B0.9700C24—H24B0.9600
C10—C111.548 (5)C24—H24C0.9600
C10—H100.9800C25—O11.231 (4)
C11—C121.535 (5)C25—O21.281 (4)
C11—C161.548 (5)C26—O41.227 (4)
C12—C131.539 (5)C26—O31.282 (4)
C12—H12A0.9700O1—H1B0.8499
C12—H12B0.9700O4—H4D0.8500
C13—C141.524 (5)O7—H7A0.8499
C13—H13A0.9700O7—H7B0.8501
C13—H13B0.9700
C25—C1—C2109.6 (3)C14—C13—H13A109.4
C25—C1—C15107.4 (3)C12—C13—H13A109.4
C2—C1—C15115.1 (3)C14—C13—H13B109.4
C25—C1—C14103.6 (3)C12—C13—H13B109.4
C2—C1—C14110.1 (3)H13A—C13—H13B108.0
C15—C1—C14110.2 (3)C13—C14—C1111.6 (3)
C1—C2—C3113.6 (3)C13—C14—H14A109.3
C1—C2—C11117.2 (3)C1—C14—H14A109.3
C3—C2—C11110.5 (3)C13—C14—H14B109.3
C1—C2—H2104.7C1—C14—H14B109.3
C3—C2—H2104.7H14A—C14—H14B108.0
C11—C2—H2104.7C1—C15—H15A109.5
C4—C3—C2110.1 (3)C1—C15—H15B109.5
C4—C3—H3A109.6H15A—C15—H15B109.5
C2—C3—H3A109.6C1—C15—H15C109.5
C4—C3—H3B109.6H15A—C15—H15C109.5
C2—C3—H3B109.6H15B—C15—H15C109.5
H3A—C3—H3B108.1C11—C16—H16A109.5
C3—C4—C5114.2 (3)C11—C16—H16B109.5
C3—C4—H4A108.7H16A—C16—H16B109.5
C5—C4—H4A108.7C11—C16—H16C109.5
C3—C4—H4B108.7H16A—C16—H16C109.5
C5—C4—H4B108.7H16B—C16—H16C109.5
H4A—C4—H4B107.6C18—C17—C5116.6 (4)
C17—C5—C4113.8 (3)C18—C17—H17121.7
C17—C5—C6107.3 (3)C5—C17—H17121.7
C4—C5—C6109.3 (3)C17—C18—C19127.3 (4)
C17—C5—C10109.1 (3)C17—C18—C8112.1 (3)
C4—C5—C10110.9 (3)C19—C18—C8120.6 (3)
C6—C5—C10106.2 (3)C18—C19—C20110.7 (3)
C26—C6—C7114.4 (3)C18—C19—C21112.9 (3)
C26—C6—C5110.0 (3)C20—C19—C21111.4 (4)
C7—C6—C5108.4 (3)C18—C19—H19107.2
C26—C6—H6108.0C20—C19—H19107.2
C7—C6—H6108.0C21—C19—H19107.2
C5—C6—H6108.0C19—C20—H20A109.5
C22—C7—C8111.1 (3)C19—C20—H20B109.5
C22—C7—C6116.1 (3)H20A—C20—H20B109.5
C8—C7—C6109.8 (3)C19—C20—H20C109.5
C22—C7—H7106.4H20A—C20—H20C109.5
C8—C7—H7106.4H20B—C20—H20C109.5
C6—C7—H7106.4C19—C21—H21A109.5
C18—C8—C9109.4 (3)C19—C21—H21B109.5
C18—C8—C7109.1 (3)H21A—C21—H21B109.5
C9—C8—C7107.0 (3)C19—C21—H21C109.5
C18—C8—H8110.4H21A—C21—H21C109.5
C9—C8—H8110.4H21B—C21—H21C109.5
C7—C8—H8110.4O6—C22—O5123.1 (3)
C8—C9—C10110.7 (3)O6—C22—C7125.3 (4)
C8—C9—H9A109.5O5—C22—C7111.5 (3)
C10—C9—H9A109.5C24—C23—O5108.6 (3)
C8—C9—H9B109.5C24—C23—H23A110.0
C10—C9—H9B109.5O5—C23—H23A110.0
H9A—C9—H9B108.1C24—C23—H23B110.0
C11—C10—C9114.9 (3)O5—C23—H23B110.0
C11—C10—C5115.8 (3)H23A—C23—H23B108.3
C9—C10—C5107.3 (3)C23—C24—H24A109.5
C11—C10—H10106.0C23—C24—H24B109.5
C9—C10—H10106.0H24A—C24—H24B109.5
C5—C10—H10106.0C23—C24—H24C109.5
C12—C11—C16109.0 (3)H24A—C24—H24C109.5
C12—C11—C10107.9 (3)H24B—C24—H24C109.5
C16—C11—C10112.3 (3)O1—C25—O2120.3 (3)
C12—C11—C2108.1 (3)O1—C25—C1122.7 (3)
C16—C11—C2113.3 (3)O2—C25—C1116.7 (3)
C10—C11—C2106.0 (3)O4—C26—O3123.5 (4)
C11—C12—C13113.0 (3)O4—C26—C6122.5 (4)
C11—C12—H12A109.0O3—C26—C6113.9 (3)
C13—C12—H12A109.0C25—O1—H1B109.1
C11—C12—H12B109.0C26—O4—H4D108.8
C13—C12—H12B109.0C22—O5—C23115.6 (3)
H12A—C12—H12B107.8H7A—O7—H7B109.5
C14—C13—C12111.3 (3)
C25—C1—C2—C365.4 (4)C3—C2—C11—C12177.2 (3)
C15—C1—C2—C355.8 (4)C1—C2—C11—C1670.3 (4)
C14—C1—C2—C3178.8 (3)C3—C2—C11—C1661.9 (4)
C25—C1—C2—C11163.8 (3)C1—C2—C11—C10166.1 (3)
C15—C1—C2—C1175.0 (4)C3—C2—C11—C1061.7 (4)
C14—C1—C2—C1150.4 (4)C16—C11—C12—C1370.6 (4)
C1—C2—C3—C4162.8 (3)C10—C11—C12—C13167.2 (3)
C11—C2—C3—C463.2 (4)C2—C11—C12—C1352.9 (4)
C2—C3—C4—C554.5 (4)C11—C12—C13—C1458.7 (4)
C3—C4—C5—C1777.7 (4)C12—C13—C14—C156.6 (4)
C3—C4—C5—C6162.5 (3)C25—C1—C14—C13168.7 (3)
C3—C4—C5—C1045.8 (4)C2—C1—C14—C1351.5 (4)
C17—C5—C6—C2670.7 (4)C15—C1—C14—C1376.6 (4)
C4—C5—C6—C2653.1 (4)C4—C5—C17—C18177.6 (3)
C10—C5—C6—C26172.8 (3)C6—C5—C17—C1856.6 (4)
C17—C5—C6—C755.0 (4)C10—C5—C17—C1857.9 (4)
C4—C5—C6—C7178.8 (3)C5—C17—C18—C19179.1 (3)
C10—C5—C6—C761.5 (4)C5—C17—C18—C81.6 (5)
C26—C6—C7—C225.7 (5)C9—C8—C18—C1757.1 (4)
C5—C6—C7—C22128.8 (3)C7—C8—C18—C1759.7 (4)
C26—C6—C7—C8121.4 (3)C9—C8—C18—C19122.3 (4)
C5—C6—C7—C81.8 (4)C7—C8—C18—C19120.9 (3)
C22—C7—C8—C1874.8 (4)C17—C18—C19—C20108.6 (4)
C6—C7—C8—C1855.0 (4)C8—C18—C19—C2070.7 (5)
C22—C7—C8—C9166.9 (3)C17—C18—C19—C2117.0 (6)
C6—C7—C8—C963.3 (4)C8—C18—C19—C21163.7 (3)
C18—C8—C9—C1057.4 (4)C8—C7—C22—O61.2 (6)
C7—C8—C9—C1060.7 (4)C6—C7—C22—O6127.6 (4)
C8—C9—C10—C11133.3 (3)C8—C7—C22—O5177.8 (3)
C8—C9—C10—C53.0 (4)C6—C7—C22—O555.8 (4)
C17—C5—C10—C1178.5 (4)C2—C1—C25—O1152.3 (4)
C4—C5—C10—C1147.7 (4)C15—C1—C25—O126.5 (5)
C6—C5—C10—C11166.3 (3)C14—C1—C25—O190.2 (4)
C17—C5—C10—C951.4 (4)C2—C1—C25—O232.6 (4)
C4—C5—C10—C9177.5 (3)C15—C1—C25—O2158.4 (3)
C6—C5—C10—C963.9 (4)C14—C1—C25—O284.9 (4)
C9—C10—C11—C1263.4 (4)C7—C6—C26—O452.3 (5)
C5—C10—C11—C12170.5 (3)C5—C6—C26—O469.9 (4)
C9—C10—C11—C1656.8 (4)C7—C6—C26—O3131.2 (3)
C5—C10—C11—C1669.3 (4)C5—C6—C26—O3106.5 (4)
C9—C10—C11—C2179.0 (3)O6—C22—O5—C232.0 (5)
C5—C10—C11—C254.9 (4)C7—C22—O5—C23178.7 (3)
C1—C2—C11—C1250.6 (4)C24—C23—O5—C22173.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4D···O50.852.402.971 (4)125
O7—H7B···O6i0.852.322.745 (4)111
C2—H2···O20.982.312.735 (4)105
C15—H15A···O10.962.372.756 (5)103
Symmetry code: (i) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H38O6·H2O
Mr464.58
Crystal system, space groupOrthorhombic, P212121
Temperature (K)291
a, b, c (Å)7.3406 (14), 17.901 (4), 19.681 (4)
V3)2586.2 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.26 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.98, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
14084, 2892, 2318
Rint0.076
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.113, 1.08
No. of reflections2892
No. of parameters303
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.22

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the President of the Chinese Academy of Forestry Foundation (CAFYBB2008009).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Y.-H., Ren, T.-R., Guo, J.-P. & Liu, J.-C. (2005). Acta Cryst. E61, o4305–o4306.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcCoy, M. (2000). Chem. Eng. News, 78, 13–15.  Google Scholar
First citationPan, Y.-M., Yang, L., Wang, H.-S., Zhao, Z.-C. & Zhang, Y. (2006). Acta Cryst. E62, o5701–o5703.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRao, X.-P., Song, Z.-Q., Radbil, B. & Radbil, A. (2006). Acta Cryst. E62, o5301–o5302.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSavluchinske-Feio, S., Nunes, L., Pereira, P. T., Silva, A. M., Roseiro, J. C., Gigante, B. & Marcelo Curto, M. J. (2007). J. Microbiol. Methods, 70, 465–470.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchweizer, R. A. S., Atanasov, A. G., Frey, B. M. & Odermatt, A. (2003). Molec. Cellular Endocrinol. 212, 41–49.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds