organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

10-Acetyl-10H-pheno­thia­zine 5-oxide

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiao Zuo 454000, People's Republic of China, and bDepartment of Medicine, Hebi College of Vocation and Technology, He Bi 458030, People's Republic of China
*Correspondence e-mail: wangqiang@hpu.edu.cn

(Received 24 June 2009; accepted 19 July 2009; online 25 July 2009)

In the title compound, C14H11NO2S, the sulfoxide O atom is disordered over two sites with occupancies of 0.886 (4) and 0.114 (4), reflecting a partial inversion of the lone pair at the tetra­hedral S-atom site. In the crystal, a supra­molecular arrangement arises from weak inter­molecular C—H⋯O hydrogen bonds. ππ contacts between the aromatic rings of symmetry-related mol­ecules [centroid–centroid distances = 3.7547 (15) and 3.9577 (15) Å] in parallel accumulation further stabilize the crystal structure.

Related literature

For synthetic details, see: Gilman & Nelson (1953[Gilman, H. & Nelson, R. D. (1953). J. Am. Chem. Soc. 75, 5422-5425.]); Chan et al. (1998[Chan, C., Yin, H., Garforth, J., McKie, J. H., Jaouhari, R., Speers, P., Douglas, K. T., Rock, P. J., Yardley, V., Croft, S. L. & Fairlamb, A. H. (1998). J. Med. Chem. 41, 148-156.]). For a general background to phenothia­zine-based mol­ecules, see: Miller et al. (1999[Miller, M. T., Gantzel, P. K. & Karpishin, T. B. (1999). J. Am. Chem. Soc. 121, 4292-4293.]); Lam et al. (2001[Lam, M., Oleinick, N. L. & Nieminen, A. L. (2001). J. Biol. Chem. 276, 47379-47386.]); Wermuth (2003[Wermuth, C. G. (2003). The Practice of Medicinal Chemistry, 2nd ed. London: Acdemic Press.]); Wang et al. (2008[Wang, J., Dong, M., Liang, J., Chang, Z., Feng, S., Wang, H. & Ding, N. (2008). Chin. J. Lab. Diagn. 12, 381-382.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11NO2S

  • Mr = 257.30

  • Monoclinic, P 21 /n

  • a = 8.1244 (1) Å

  • b = 14.1787 (2) Å

  • c = 10.7576 (1) Å

  • β = 100.963 (1)°

  • V = 1216.59 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.20 × 0.14 × 0.13 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.950, Tmax = 0.967

  • 11538 measured reflections

  • 3067 independent reflections

  • 2404 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.127

  • S = 1.09

  • 3067 reflections

  • 174 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O1Ai 0.93 2.31 3.207 (3) 163
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phenothiazine is a well known heterocycle. The phenothiazine structure occurs in many synthetic dyes, electroluminescent materials (Miller et al., 1999) and drugs, especially various antipsychotic drugs, e.g. Chlorpromazine and antihistaminic drugs, e.g. Promethazine (Wermuth, 2003). Recently, researchers find some new applications for phenothiazine derivatives in medicine, such as antitubercular (Wang et al., 2008) and antitumor (Lam et al., 2001). As a part of our program devoted to the new applications of phenothiazine derivatives in medicine, we report herein the crystal structure of the title compound, (I).

The molecular structure is shown in fig. 1, with the labeling scheme. The sulfoxide O atom is disordered over two sites (O1A and O1B) with occupancies of 0.88 and 0.12, respectively, corresponding to an inversion of the lone pair at tetrahedral S1 site.

The crystal structure of (I) consists of the self-assembly of the molecules through weak hydrogen bonding interactions of the kind C—H···O. The crystal packing (Fig. 2) consists of a wavy-like arrangement in the ab plane generated by intermolecular interactions of hydrogen bond between the O1A atom of sulfoxide and H atom H5 of the aromatic ring. On the other hand, ππ contacts between the aromatic rings [centroid to centroid distances = 3.7547 (15) and 3.9577 (15) Å ] in parallel accumulation may further stabilize the crystal structure.

Related literature top

For synthetic details, see: Gilman & Nelson (1953); Chan et al. (1998). For a general background to phenothiazine-based molecules, see: Miller et al. (1999); Lam et al. (2001); Wermuth (2003); Wang et al. (2008).

Experimental top

All reagents were of analytical grade. The title sample was prepared according to a literature method (Gilman & Nelson, 1953; Chan et al., 1998) from the N-benzylphenothiazine. The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared spectra and elemental analyses. Single crystals of the title compound were obtained by slow evaporation of an ethanol solution. The X-ray diffraction studies were made at room temperature.

Refinement top

H atoms bonded to C atoms were positioned geometrically (C—H = 0.93 and 0.96Å for benzene and methyl H atoms, respectively) and included in the refinement in the riding-model approximation, with Uiso(H) = 1.2 or 1.5 Ueq(C). The sulfoxide O atom is disordered over two positions with partial site-occupancies of 0.88 and 0.12, respectively, which were fixed in the last least-squares cycles.

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines, viewed down the a axis.
10-Acetyl-10H-phenothiazine 5-oxide top
Crystal data top
C14H11NO2SF(000) = 536
Mr = 257.30Dx = 1.405 Mg m3
Monoclinic, P21/nMelting point: 443 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.1244 (1) ÅCell parameters from 4917 reflections
b = 14.1787 (2) Åθ = 2.4–27.7°
c = 10.7576 (1) ŵ = 0.26 mm1
β = 100.963 (1)°T = 296 K
V = 1216.59 (3) Å3Block, orange
Z = 40.20 × 0.14 × 0.13 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3067 independent reflections
Radiation source: fine-focus sealed tube2404 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 28.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1010
Tmin = 0.950, Tmax = 0.967k = 1818
11538 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.5122P]
where P = (Fo2 + 2Fc2)/3
3067 reflections(Δ/σ)max = 0.001
174 parametersΔρmax = 0.34 e Å3
2 restraintsΔρmin = 0.24 e Å3
0 constraints
Crystal data top
C14H11NO2SV = 1216.59 (3) Å3
Mr = 257.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.1244 (1) ŵ = 0.26 mm1
b = 14.1787 (2) ÅT = 296 K
c = 10.7576 (1) Å0.20 × 0.14 × 0.13 mm
β = 100.963 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3067 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2404 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.967Rint = 0.019
11538 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0462 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.09Δρmax = 0.34 e Å3
3067 reflectionsΔρmin = 0.24 e Å3
174 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2768 (2)1.03984 (14)0.34599 (17)0.0419 (4)
C20.4325 (3)1.08344 (17)0.3653 (2)0.0552 (6)
H2A0.44401.14610.39110.066*
C30.5687 (3)1.0329 (2)0.3456 (2)0.0679 (7)
H3A0.67361.06140.35850.081*
C40.5520 (3)0.9400 (2)0.3069 (2)0.0603 (6)
H4A0.64610.90590.29600.072*
C50.3958 (2)0.89724 (16)0.28427 (19)0.0482 (5)
H5A0.38450.83530.25540.058*
C60.2563 (2)0.94696 (13)0.30478 (16)0.0372 (4)
C70.0305 (2)0.97033 (13)0.19798 (17)0.0383 (4)
C80.0329 (2)1.06443 (13)0.23222 (18)0.0415 (4)
C90.1414 (3)1.12817 (16)0.1596 (2)0.0552 (5)
H9A0.14141.19140.18240.066*
C100.2486 (3)1.09580 (18)0.0533 (2)0.0600 (6)
H10A0.32191.13750.00400.072*
C110.2480 (3)1.00256 (18)0.0197 (2)0.0580 (6)
H11A0.32230.98150.05150.070*
C120.1381 (2)0.93909 (15)0.09038 (19)0.0467 (5)
H12A0.13690.87630.06570.056*
C130.0405 (3)0.82363 (14)0.3156 (2)0.0479 (5)
C140.1638 (3)0.76880 (16)0.4099 (2)0.0602 (6)
H14A0.10480.73210.46220.090*
H14B0.23860.81160.46190.090*
H14C0.22710.72760.36590.090*
N10.09014 (18)0.90973 (10)0.27386 (15)0.0388 (3)
O20.1007 (2)0.79521 (12)0.2791 (2)0.0756 (6)
S10.09806 (7)1.10145 (4)0.37655 (5)0.05019 (17)
O1A0.1306 (3)1.20324 (11)0.37154 (19)0.0716 (7)0.886 (4)
O1B0.0214 (17)1.0640 (10)0.4755 (10)0.068 (5)0.114 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0440 (10)0.0426 (10)0.0387 (9)0.0069 (8)0.0070 (7)0.0010 (8)
C20.0588 (13)0.0576 (13)0.0471 (11)0.0228 (11)0.0047 (9)0.0040 (9)
C30.0425 (11)0.100 (2)0.0595 (14)0.0217 (13)0.0069 (10)0.0140 (14)
C40.0384 (10)0.0930 (19)0.0505 (12)0.0062 (11)0.0108 (9)0.0122 (12)
C50.0444 (10)0.0558 (12)0.0440 (10)0.0094 (9)0.0074 (8)0.0036 (9)
C60.0354 (9)0.0394 (10)0.0362 (9)0.0009 (7)0.0050 (7)0.0030 (7)
C70.0326 (8)0.0359 (9)0.0469 (10)0.0023 (7)0.0090 (7)0.0043 (7)
C80.0413 (10)0.0369 (9)0.0491 (10)0.0044 (8)0.0153 (8)0.0038 (8)
C90.0607 (13)0.0416 (11)0.0674 (14)0.0151 (10)0.0230 (11)0.0118 (10)
C100.0512 (12)0.0671 (15)0.0618 (13)0.0193 (11)0.0109 (10)0.0222 (11)
C110.0445 (11)0.0760 (16)0.0510 (12)0.0027 (11)0.0028 (9)0.0102 (11)
C120.0416 (10)0.0466 (11)0.0512 (11)0.0019 (9)0.0072 (8)0.0018 (9)
C130.0452 (11)0.0334 (10)0.0637 (13)0.0001 (8)0.0065 (9)0.0048 (9)
C140.0633 (14)0.0438 (12)0.0713 (14)0.0045 (10)0.0071 (11)0.0160 (10)
N10.0348 (7)0.0305 (7)0.0496 (9)0.0005 (6)0.0040 (6)0.0027 (6)
O20.0546 (10)0.0521 (10)0.1130 (15)0.0162 (8)0.0019 (9)0.0240 (9)
S10.0644 (3)0.0362 (3)0.0524 (3)0.0005 (2)0.0175 (2)0.0066 (2)
O1A0.1022 (16)0.0319 (9)0.0786 (14)0.0026 (9)0.0119 (11)0.0088 (8)
O1B0.084 (11)0.080 (11)0.045 (8)0.017 (8)0.020 (7)0.003 (7)
Geometric parameters (Å, º) top
C1—C21.387 (3)C8—S11.786 (2)
C1—C61.389 (3)C9—C101.377 (3)
C1—S11.778 (2)C9—H9A0.9300
C2—C31.369 (4)C10—C111.371 (3)
C2—H2A0.9300C10—H10A0.9300
C3—C41.380 (4)C11—C121.388 (3)
C3—H3A0.9300C11—H11A0.9300
C4—C51.385 (3)C12—H12A0.9300
C4—H4A0.9300C13—O21.209 (2)
C5—C61.388 (3)C13—N11.387 (2)
C5—H5A0.9300C13—C141.500 (3)
C6—N11.428 (2)C14—H14A0.9600
C7—C121.384 (3)C14—H14B0.9600
C7—C81.385 (3)C14—H14C0.9600
C7—N11.436 (2)S1—O1B1.433 (5)
C8—C91.394 (3)S1—O1A1.4700 (17)
C2—C1—C6121.40 (19)C11—C10—C9120.4 (2)
C2—C1—S1120.45 (17)C11—C10—H10A119.8
C6—C1—S1118.14 (14)C9—C10—H10A119.8
C3—C2—C1119.0 (2)C10—C11—C12121.0 (2)
C3—C2—H2A120.5C10—C11—H11A119.5
C1—C2—H2A120.5C12—C11—H11A119.5
C2—C3—C4120.7 (2)C7—C12—C11119.3 (2)
C2—C3—H3A119.6C7—C12—H12A120.4
C4—C3—H3A119.6C11—C12—H12A120.4
C3—C4—C5120.3 (2)O2—C13—N1120.32 (18)
C3—C4—H4A119.9O2—C13—C14121.16 (19)
C5—C4—H4A119.9N1—C13—C14118.48 (18)
C4—C5—C6119.9 (2)C13—C14—H14A109.5
C4—C5—H5A120.0C13—C14—H14B109.5
C6—C5—H5A120.0H14A—C14—H14B109.5
C5—C6—C1118.67 (17)C13—C14—H14C109.5
C5—C6—N1122.65 (17)H14A—C14—H14C109.5
C1—C6—N1118.40 (16)H14B—C14—H14C109.5
C12—C7—C8119.46 (17)C13—N1—C6124.75 (15)
C12—C7—N1122.58 (17)C13—N1—C7120.12 (15)
C8—C7—N1117.90 (16)C6—N1—C7115.08 (14)
C7—C8—C9121.0 (2)O1B—S1—O1A119.8 (6)
C7—C8—S1118.55 (14)O1B—S1—C1116.2 (6)
C9—C8—S1120.37 (16)O1A—S1—C1108.47 (11)
C10—C9—C8118.8 (2)O1B—S1—C8105.4 (6)
C10—C9—H9A120.6O1A—S1—C8109.77 (10)
C8—C9—H9A120.6C1—S1—C893.87 (9)
C6—C1—C2—C31.4 (3)C14—C13—N1—C66.2 (3)
S1—C1—C2—C3177.45 (17)O2—C13—N1—C76.8 (3)
C1—C2—C3—C40.2 (3)C14—C13—N1—C7171.17 (19)
C2—C3—C4—C51.7 (3)C5—C6—N1—C1354.0 (3)
C3—C4—C5—C62.3 (3)C1—C6—N1—C13132.1 (2)
C4—C5—C6—C11.1 (3)C5—C6—N1—C7128.52 (19)
C4—C5—C6—N1174.92 (18)C1—C6—N1—C745.4 (2)
C2—C1—C6—C50.8 (3)C12—C7—N1—C1351.1 (3)
S1—C1—C6—C5178.09 (14)C8—C7—N1—C13131.6 (2)
C2—C1—C6—N1173.37 (17)C12—C7—N1—C6131.29 (19)
S1—C1—C6—N17.8 (2)C8—C7—N1—C646.0 (2)
C12—C7—C8—C90.4 (3)C2—C1—S1—O1B116.3 (7)
N1—C7—C8—C9177.03 (17)C6—C1—S1—O1B62.6 (7)
C12—C7—C8—S1176.25 (15)C2—C1—S1—O1A22.1 (2)
N1—C7—C8—S16.3 (2)C6—C1—S1—O1A159.03 (15)
C7—C8—C9—C100.9 (3)C2—C1—S1—C8134.44 (17)
S1—C8—C9—C10175.71 (16)C6—C1—S1—C846.70 (16)
C8—C9—C10—C110.2 (3)C7—C8—S1—O1B72.4 (6)
C9—C10—C11—C121.0 (3)C9—C8—S1—O1B104.2 (6)
C8—C7—C12—C110.8 (3)C7—C8—S1—O1A157.27 (16)
N1—C7—C12—C11178.08 (18)C9—C8—S1—O1A26.1 (2)
C10—C11—C12—C71.5 (3)C7—C8—S1—C146.07 (16)
O2—C13—N1—C6175.9 (2)C9—C8—S1—C1137.28 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O1Ai0.932.313.207 (3)163
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H11NO2S
Mr257.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.1244 (1), 14.1787 (2), 10.7576 (1)
β (°) 100.963 (1)
V3)1216.59 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.20 × 0.14 × 0.13
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.950, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
11538, 3067, 2404
Rint0.019
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.127, 1.09
No. of reflections3067
No. of parameters174
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.24

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O1Ai0.932.313.207 (3)163
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Foundation of Hean Polytechnic University for Doctor Teachers. The authors thank Ms Q. F. Wang and Dr Z. Z. Zhang for their assistance with the data collection and analysis, respectively.

References

First citationBruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, C., Yin, H., Garforth, J., McKie, J. H., Jaouhari, R., Speers, P., Douglas, K. T., Rock, P. J., Yardley, V., Croft, S. L. & Fairlamb, A. H. (1998). J. Med. Chem. 41, 148–156.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGilman, H. & Nelson, R. D. (1953). J. Am. Chem. Soc. 75, 5422–5425.  CrossRef CAS Web of Science Google Scholar
First citationLam, M., Oleinick, N. L. & Nieminen, A. L. (2001). J. Biol. Chem. 276, 47379–47386.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMiller, M. T., Gantzel, P. K. & Karpishin, T. B. (1999). J. Am. Chem. Soc. 121, 4292–4293.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J., Dong, M., Liang, J., Chang, Z., Feng, S., Wang, H. & Ding, N. (2008). Chin. J. Lab. Diagn. 12, 381–382.  Google Scholar
First citationWermuth, C. G. (2003). The Practice of Medicinal Chemistry, 2nd ed. London: Acdemic Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds