metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido{2-[2-(di­methyl­ammonio)ethyl­imino­meth­yl]-6-meth­oxy­phenolato}zinc(II)

aNational Changhua University of Education, Department of Chemistry, Changhua, Taiwan 50058
*Correspondence e-mail: leehm@cc.ncue.edu.tw

(Received 3 July 2009; accepted 17 July 2009; online 22 July 2009)

The structure of the title complex, [ZnCl2(C12H18N2O2)], contains a zwitterionic Schiff base ligand. The complex adopts a distorted tetra­hedral coordination geometry around the metal centre with the Schiff base ligand coordinated in a bidentate fashion via the imine N and phenolate O atoms. In the crystal, inter­molecular N—H⋯O and C—H⋯Cl hydrogen bonds link the mol­ecules into chains parallel to the c-glide planes.

Related literature

For bidentate Schiff base–Zn(II) complexes, see: Qiu (2006[Qiu, X.-Y. (2006). Acta Cryst. E62, m2173-m2174.]); Wang & Qiu (2006[Wang, Q. & Qiu, X.-Y. (2006). Acta Cryst. E62, m3002-m3003.]); Ye & You (2008[Ye, L.-J. & You, Z. (2008). Acta Cryst. E64, m869.]); You (2005a[You, Z.-L. (2005a). Acta Cryst. E61, m2416-m2418.],b[You, Z.-L. (2005b). Acta Cryst. C61, m383-m385.]); Zhu (2008[Zhu, X.-W. (2008). Acta Cryst. E64, m1456-m1457.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C12H18N2O2)]

  • Mr = 358.55

  • Monoclinic, P 21 /c

  • a = 8.5621 (6) Å

  • b = 16.9642 (12) Å

  • c = 13.1106 (7) Å

  • β = 127.732 (3)°

  • V = 1506.08 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.98 mm−1

  • T = 298 K

  • 0.32 × 0.25 × 0.22 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.552, Tmax = 0.649

  • 8355 measured reflections

  • 2960 independent reflections

  • 2439 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.075

  • S = 1.01

  • 2960 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.91 1.97 2.842 (2) 161
N1—H1⋯O2i 0.91 2.38 2.985 (2) 124
C5—H5⋯Cl2i 0.93 2.80 3.617 (2) 148
Symmetry code: (i) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The Schiff base 2-((2-(dimethylamino)ethylimino)methyl)-6-methoxyphenol reacts with zinc(II) chloride in methanol to form the title complex. It adopts tetrahedron coordination geometry with the Schiff base ligand coordinated via the imine N and the phenolate O atoms. A formal proton transfer of the phenolic hydrogen to the amine N atom occurred leading to the formation of the neutral O/N-bidentate ligand bearing a pendant ammonium group.

Bidentate Schiff base Zn(II) complexes similar to the title complex were reported in the literature (Qiu, 2006; Wang & Qiu, 2006; Ye & You, 2008; You, 2005a, b; Zhu, 2008).

Classical intermolecular H-bonds of the type N—H···O and non-classical H-bonds of the type C—H···Cl exist (Table 1). These H-bonds link the complex into one-dimensional hydrogen bonded chains.

Related literature top

For bidentate Schiff base–Zn(II) complexes, see: Qiu (2006); Wang & Qiu (2006); Ye & You (2008); You (2005a,b); Zhu (2008).

Experimental top

To an aqueous solution (20 ml) of zinc(II) chloride (0.136 g, 1.00 mmol), a methanolic solution of the Schiff base 2-((2-(dimethylamino)ethylimino)methyl)-6-methoxyphenol (1.00 mmol) was added. The resulting mixture was kept at room temperature yielding brown block-like crystals suitable for X-ray diffraction after few days. Crystals were isolated by filtration and were dried in the air.

Refinement top

All the H atoms were positioned geometrically and refined as riding atoms, with Caryl—H = 0.93, Cmethyl—H = 0.96, Cmethylene—H = 0.97, and N—H = 0.91 Å, while Uiso(H) = 1.5Ueq(C) for the methyl H atoms and Uiso(H) = 1.2Ueq(C) for all the other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing 50% displacement ellipsoids for non-H atoms. The H atoms are depicted by circles of arbitrary radius.
[Figure 2] Fig. 2. A packing diagram of the title compound showing the intermolecular hydrogen bonds (dashed lines).
Dichlorido{2-[2-(dimethylammonio)ethyliminomethyl]-6-methoxyphenolato}zinc(II) top
Crystal data top
[ZnCl2(C12H18N2O2)]F(000) = 736
Mr = 358.55Dx = 1.581 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4320 reflections
a = 8.5621 (6) Åθ = 2.4–26.0°
b = 16.9642 (12) ŵ = 1.98 mm1
c = 13.1106 (7) ÅT = 298 K
β = 127.732 (3)°Block, brown
V = 1506.08 (17) Å30.32 × 0.25 × 0.22 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
2960 independent reflections
Radiation source: fine-focus sealed tube2439 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 109
Tmin = 0.552, Tmax = 0.649k = 2020
8355 measured reflectionsl = 1016
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0461P)2]
where P = (Fo2 + 2Fc2)/3
2960 reflections(Δ/σ)max = 0.001
175 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.34 e Å3
0 constraints
Crystal data top
[ZnCl2(C12H18N2O2)]V = 1506.08 (17) Å3
Mr = 358.55Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5621 (6) ŵ = 1.98 mm1
b = 16.9642 (12) ÅT = 298 K
c = 13.1106 (7) Å0.32 × 0.25 × 0.22 mm
β = 127.732 (3)°
Data collection top
Bruker SMART APEXII
diffractometer
2960 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2439 reflections with I > 2σ(I)
Tmin = 0.552, Tmax = 0.649Rint = 0.030
8355 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.01Δρmax = 0.35 e Å3
2960 reflectionsΔρmin = 0.34 e Å3
175 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.68123 (3)0.747503 (13)0.52685 (2)0.02988 (10)
Cl10.60094 (9)0.72171 (4)0.65804 (6)0.04492 (16)
Cl20.86631 (8)0.65127 (4)0.53283 (6)0.04647 (17)
O10.7870 (2)0.85437 (8)0.55417 (13)0.0336 (3)
O20.9469 (2)0.99419 (9)0.62283 (15)0.0432 (4)
N10.1190 (3)0.63462 (11)0.31873 (17)0.0357 (4)
H10.01100.62590.23580.043*
N20.4369 (2)0.76199 (10)0.34509 (17)0.0285 (4)
C10.1242 (4)0.57202 (15)0.4010 (2)0.0512 (6)
H1A0.00340.57320.39100.077*
H1B0.23360.58130.48970.077*
H1C0.13880.52140.37510.077*
C20.0953 (3)0.71360 (15)0.3580 (2)0.0442 (6)
H2A0.08000.75300.29990.066*
H2B0.21010.72530.44410.066*
H2C0.01940.71330.35520.066*
C30.2983 (3)0.62794 (13)0.3237 (2)0.0364 (5)
H3A0.29120.57860.28370.044*
H3B0.41440.62580.41340.044*
C40.3242 (3)0.69479 (13)0.2580 (2)0.0354 (5)
H4A0.39210.67490.22530.043*
H4B0.19510.71320.18500.043*
C50.3886 (3)0.83097 (13)0.2944 (2)0.0324 (5)
H50.27680.83380.20870.039*
C60.4879 (3)0.90494 (12)0.35490 (19)0.0302 (5)
C70.3821 (3)0.97261 (14)0.2809 (2)0.0393 (5)
H70.25820.96660.20180.047*
C80.4579 (4)1.04639 (14)0.3232 (2)0.0432 (6)
H80.38411.09030.27500.052*
C90.6463 (3)1.05555 (13)0.4387 (2)0.0397 (5)
H90.69881.10590.46740.048*
C100.7563 (3)0.99069 (12)0.5115 (2)0.0321 (5)
C110.6771 (3)0.91289 (12)0.47493 (19)0.0280 (4)
C121.0452 (4)1.06907 (14)0.6573 (3)0.0537 (7)
H12A0.98711.10440.68280.081*
H12B1.03141.09070.58450.081*
H12C1.18271.06220.72760.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02911 (15)0.02351 (15)0.03349 (16)0.00104 (9)0.01735 (12)0.00050 (9)
Cl10.0429 (3)0.0566 (4)0.0423 (3)0.0001 (3)0.0297 (3)0.0034 (3)
Cl20.0428 (3)0.0418 (3)0.0553 (4)0.0101 (3)0.0303 (3)0.0005 (3)
O10.0304 (7)0.0224 (8)0.0340 (8)0.0004 (6)0.0126 (6)0.0016 (6)
O20.0423 (9)0.0256 (8)0.0426 (9)0.0090 (7)0.0163 (8)0.0024 (7)
N10.0308 (9)0.0373 (11)0.0342 (10)0.0060 (8)0.0175 (8)0.0036 (8)
N20.0267 (8)0.0282 (10)0.0314 (9)0.0047 (7)0.0183 (8)0.0039 (7)
C10.0598 (16)0.0482 (16)0.0506 (15)0.0093 (12)0.0363 (14)0.0020 (12)
C20.0353 (12)0.0465 (15)0.0497 (14)0.0028 (11)0.0254 (11)0.0053 (11)
C30.0323 (11)0.0282 (12)0.0454 (13)0.0019 (9)0.0220 (10)0.0063 (9)
C40.0360 (11)0.0366 (13)0.0353 (12)0.0084 (9)0.0227 (10)0.0113 (9)
C50.0286 (10)0.0379 (13)0.0312 (11)0.0001 (9)0.0186 (9)0.0028 (9)
C60.0325 (10)0.0273 (11)0.0343 (11)0.0011 (8)0.0222 (9)0.0028 (8)
C70.0364 (12)0.0376 (13)0.0380 (12)0.0038 (10)0.0197 (10)0.0080 (10)
C80.0462 (14)0.0292 (13)0.0490 (14)0.0094 (10)0.0264 (12)0.0145 (10)
C90.0508 (14)0.0250 (12)0.0480 (14)0.0013 (10)0.0326 (12)0.0041 (10)
C100.0364 (12)0.0264 (11)0.0334 (11)0.0013 (9)0.0214 (10)0.0004 (9)
C110.0317 (10)0.0260 (11)0.0315 (11)0.0007 (8)0.0219 (9)0.0027 (8)
C120.0561 (16)0.0275 (14)0.0609 (17)0.0159 (11)0.0272 (14)0.0082 (11)
Geometric parameters (Å, º) top
Zn1—O11.9590 (14)C3—C41.521 (3)
Zn1—N22.0034 (18)C3—H3A0.9700
Zn1—Cl22.2429 (6)C3—H3B0.9700
Zn1—Cl12.2516 (6)C4—H4A0.9700
O1—C111.324 (2)C4—H4B0.9700
O2—C101.372 (3)C5—C61.450 (3)
O2—C121.435 (3)C5—H50.9300
N1—C21.493 (3)C6—C111.414 (3)
N1—C11.495 (3)C6—C71.415 (3)
N1—C31.500 (3)C7—C81.362 (3)
N1—H10.9100C7—H70.9300
N2—C51.283 (3)C8—C91.389 (3)
N2—C41.479 (3)C8—H80.9300
C1—H1A0.9600C9—C101.381 (3)
C1—H1B0.9600C9—H90.9300
C1—H1C0.9600C10—C111.426 (3)
C2—H2A0.9600C12—H12A0.9600
C2—H2B0.9600C12—H12B0.9600
C2—H2C0.9600C12—H12C0.9600
O1—Zn1—N297.67 (6)H3A—C3—H3B107.5
O1—Zn1—Cl2115.44 (5)N2—C4—C3112.94 (18)
N2—Zn1—Cl2109.39 (5)N2—C4—H4A109.0
O1—Zn1—Cl1111.30 (5)C3—C4—H4A109.0
N2—Zn1—Cl1110.35 (5)N2—C4—H4B109.0
Cl2—Zn1—Cl1111.80 (3)C3—C4—H4B109.0
C11—O1—Zn1121.55 (13)H4A—C4—H4B107.8
C10—O2—C12117.37 (18)N2—C5—C6127.7 (2)
C2—N1—C1109.82 (19)N2—C5—H5116.2
C2—N1—C3113.83 (16)C6—C5—H5116.2
C1—N1—C3109.71 (18)C11—C6—C7120.1 (2)
C2—N1—H1107.8C11—C6—C5125.47 (19)
C1—N1—H1107.8C7—C6—C5114.34 (19)
C3—N1—H1107.8C8—C7—C6121.4 (2)
C5—N2—C4116.87 (19)C8—C7—H7119.3
C5—N2—Zn1119.94 (14)C6—C7—H7119.3
C4—N2—Zn1122.48 (14)C7—C8—C9119.5 (2)
N1—C1—H1A109.5C7—C8—H8120.2
N1—C1—H1B109.5C9—C8—H8120.2
H1A—C1—H1B109.5C10—C9—C8120.7 (2)
N1—C1—H1C109.5C10—C9—H9119.7
H1A—C1—H1C109.5C8—C9—H9119.7
H1B—C1—H1C109.5O2—C10—C9124.4 (2)
N1—C2—H2A109.5O2—C10—C11114.14 (18)
N1—C2—H2B109.5C9—C10—C11121.5 (2)
H2A—C2—H2B109.5O1—C11—C6125.57 (19)
N1—C2—H2C109.5O1—C11—C10117.83 (18)
H2A—C2—H2C109.5C6—C11—C10116.59 (18)
H2B—C2—H2C109.5O2—C12—H12A109.5
N1—C3—C4114.78 (18)O2—C12—H12B109.5
N1—C3—H3A108.6H12A—C12—H12B109.5
C4—C3—H3A108.6O2—C12—H12C109.5
N1—C3—H3B108.6H12A—C12—H12C109.5
C4—C3—H3B108.6H12B—C12—H12C109.5
N2—Zn1—O1—C1114.33 (16)C11—C6—C7—C80.5 (3)
Cl2—Zn1—O1—C11130.12 (14)C5—C6—C7—C8178.3 (2)
Cl1—Zn1—O1—C11101.07 (15)C6—C7—C8—C92.7 (4)
O1—Zn1—N2—C58.41 (17)C7—C8—C9—C100.6 (4)
Cl2—Zn1—N2—C5128.86 (16)C12—O2—C10—C97.6 (3)
Cl1—Zn1—N2—C5107.74 (16)C12—O2—C10—C11172.5 (2)
O1—Zn1—N2—C4161.59 (15)C8—C9—C10—O2176.4 (2)
Cl2—Zn1—N2—C441.14 (16)C8—C9—C10—C113.7 (3)
Cl1—Zn1—N2—C482.26 (15)Zn1—O1—C11—C69.9 (3)
C2—N1—C3—C448.9 (2)Zn1—O1—C11—C10171.41 (14)
C1—N1—C3—C4172.44 (19)C7—C6—C11—O1177.8 (2)
C5—N2—C4—C3146.55 (19)C5—C6—C11—O14.7 (3)
Zn1—N2—C4—C343.2 (2)C7—C6—C11—C103.5 (3)
N1—C3—C4—N288.5 (2)C5—C6—C11—C10174.0 (2)
C4—N2—C5—C6173.07 (19)O2—C10—C11—O14.4 (3)
Zn1—N2—C5—C62.5 (3)C9—C10—C11—O1175.5 (2)
N2—C5—C6—C1112.0 (4)O2—C10—C11—C6174.43 (18)
N2—C5—C6—C7170.4 (2)C9—C10—C11—C65.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.911.972.842 (2)161
N1—H1···O2i0.912.382.985 (2)124
C5—H5···Cl2i0.932.803.617 (2)148
Symmetry code: (i) x1, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[ZnCl2(C12H18N2O2)]
Mr358.55
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.5621 (6), 16.9642 (12), 13.1106 (7)
β (°) 127.732 (3)
V3)1506.08 (17)
Z4
Radiation typeMo Kα
µ (mm1)1.98
Crystal size (mm)0.32 × 0.25 × 0.22
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.552, 0.649
No. of measured, independent and
observed [I > 2σ(I)] reflections
8355, 2960, 2439
Rint0.030
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.075, 1.01
No. of reflections2960
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.34

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.911.972.842 (2)161
N1—H1···O2i0.912.382.985 (2)124
C5—H5···Cl2i0.932.803.617 (2)148
Symmetry code: (i) x1, y+3/2, z1/2.
 

Acknowledgements

We are grateful to the National Science Council of Taiwan for financial support.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationQiu, X.-Y. (2006). Acta Cryst. E62, m2173–m2174.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Q. & Qiu, X.-Y. (2006). Acta Cryst. E62, m3002–m3003.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYe, L.-J. & You, Z. (2008). Acta Cryst. E64, m869.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYou, Z.-L. (2005a). Acta Cryst. E61, m2416–m2418.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYou, Z.-L. (2005b). Acta Cryst. C61, m383–m385.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhu, X.-W. (2008). Acta Cryst. E64, m1456–m1457.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds