organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-n-butyl 5-amino­isophthalate

aSchool of Chemistry and Life Science, Maoming University, Maoming 525000, People's Republic of China
*Correspondence e-mail: zhoutian016@163.com

(Received 19 May 2009; accepted 26 June 2009; online 4 July 2009)

The title compound, C16H23NO4, is essentially planar except for the last two C atoms in each n-butyl group (r.m.s. deviation from the least-squares plane = 0.02 Å for 17 non-H atoms). In the crystal, inter­molecular N—H⋯O hydrogen bonds between the amine and carbonyl groups link the mol­ecules into one-dimensional chains.

Related literature

For the related structure of 5-amino­isophthalic acid hemihydrate, see: Dobson & Gerkin (1998[Dobson, A. J. & Gerkin, R. E. (1998). Acta Cryst. C54, 1503-1505.]).

[Scheme 1]

Experimental

Crystal data
  • C16H23NO4

  • Mr = 293.35

  • Monoclinic, P 21 /c

  • a = 9.4350 (19) Å

  • b = 9.1640 (18) Å

  • c = 20.166 (4) Å

  • β = 94.67 (3)°

  • V = 1737.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.991, Tmax = 0.994

  • 8863 measured reflections

  • 3169 independent reflections

  • 1612 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.221

  • S = 1.04

  • 3169 reflections

  • 196 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.83 (5) 2.30 (6) 3.110 (4) 165 (6)
N1—H1B⋯O3ii 0.83 (6) 2.38 (6) 3.120 (4) 149 (5)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a part of our ongoing research on the synthesis and structure of Schiff-base ligands based on 5-aminoisophthalic acid, we obtained the title compound from acid-catalysed esterification in 1-butanol.

Related literature top

For the related structure of 5-aminoisophthalic acid hemihydrate, see: Dobson & Gerkin (1998).

Experimental top

5-Aminoisophthalic acid (10 g) was refluxed overnight in 1-butanol with catalysis of concentrated H2SO4. The solution was poured onto ice and adjusted to pH = 7, and the obtained powder was recrystallized from ethanol. Elemental analysis calculated: C 65.45, H 7.84, N 4.77%; found: C 65.42, H 7.81, N 4.70%.

Refinement top

All H atoms bound to C atoms were geometrically positioned and refined using a riding model, with C—H = 0.93 (aryl), 0.97 (methylene) or 0.96 Å (methyl), and with Uiso(H) = 1.2Ueq(C) (aryl, methylene) or 1.5Ueq(C) (methyl). H atoms on amino N were located from difference Fourier maps and their positions were refined freely, with Uiso(H) = 1.5Ueq(N). The refined N—H distances are 0.83 (5) and 0.83 (6) Å.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure with 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. One-dimensional hydrogen-bonded motif.
Di-n-butyl 5-aminoisophthalate top
Crystal data top
C16H23NO4F(000) = 632
Mr = 293.35Dx = 1.121 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3119 reflections
a = 9.4350 (19) Åθ = 2.0–25.5°
b = 9.1640 (18) ŵ = 0.08 mm1
c = 20.166 (4) ÅT = 296 K
β = 94.67 (3)°Block, colourless
V = 1737.8 (6) Å30.12 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3169 independent reflections
Radiation source: fine-focus sealed tube1612 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 25.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 711
Tmin = 0.991, Tmax = 0.994k = 1110
8863 measured reflectionsl = 2423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.221H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.1119P)2 + 0.1542P]
where P = (Fo2 + 2Fc2)/3
3169 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C16H23NO4V = 1737.8 (6) Å3
Mr = 293.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4350 (19) ŵ = 0.08 mm1
b = 9.1640 (18) ÅT = 296 K
c = 20.166 (4) Å0.12 × 0.10 × 0.08 mm
β = 94.67 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3169 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1612 reflections with I > 2σ(I)
Tmin = 0.991, Tmax = 0.994Rint = 0.029
8863 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.221H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.30 e Å3
3169 reflectionsΔρmin = 0.16 e Å3
196 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8685 (2)0.3309 (2)0.44186 (12)0.1051 (8)
O20.6509 (2)0.3015 (2)0.39278 (11)0.0938 (7)
O30.3317 (2)0.8767 (3)0.44890 (13)0.1092 (8)
O40.29283 (19)0.6651 (2)0.39827 (11)0.0944 (7)
N10.8560 (3)0.8512 (4)0.5269 (2)0.1380 (15)
H1A0.933 (6)0.815 (7)0.540 (3)0.207*
H1B0.831 (6)0.926 (6)0.546 (3)0.207*
C10.7518 (3)0.3783 (3)0.42708 (14)0.0759 (8)
C20.7015 (2)0.5250 (3)0.44442 (12)0.0674 (7)
C30.7986 (3)0.6180 (3)0.47724 (14)0.0768 (8)
H3A0.89170.58680.48720.092*
C40.7598 (3)0.7572 (3)0.49558 (15)0.0856 (9)
C50.6193 (3)0.8002 (3)0.47979 (15)0.0808 (8)
H5A0.59050.89280.49190.097*
C60.5223 (3)0.7080 (3)0.44666 (13)0.0681 (7)
C70.5629 (3)0.5693 (3)0.42860 (12)0.0675 (7)
H7A0.49770.50680.40620.081*
C80.3749 (3)0.7609 (3)0.43193 (15)0.0784 (8)
C90.1463 (3)0.7056 (4)0.38233 (19)0.1024 (10)
H9A0.14060.79010.35330.123*
H9B0.10170.72960.42260.123*
C100.0741 (4)0.5806 (5)0.3489 (3)0.1371 (16)
H10A0.06570.50540.38220.165*
H10B0.02180.61150.33440.165*
C110.1293 (6)0.5169 (9)0.2960 (4)0.220 (3)
H11A0.22570.48700.31010.265*
H11B0.13580.59120.26210.265*
C120.0559 (7)0.3906 (9)0.2644 (5)0.300 (6)
H12A0.10460.36020.22670.450*
H12B0.04010.41700.24990.450*
H12C0.05530.31190.29580.450*
C130.6881 (4)0.1552 (3)0.3734 (2)0.1112 (11)
H13A0.72340.09920.41210.133*
H13B0.76140.15840.34240.133*
C140.5572 (5)0.0874 (4)0.3415 (3)0.1471 (16)
H14A0.58220.01000.32770.177*
H14B0.49130.07620.37570.177*
C150.4815 (6)0.1559 (6)0.2858 (3)0.175 (2)
H15A0.54470.16390.25040.210*
H15B0.45700.25420.29860.210*
C160.3471 (6)0.0794 (7)0.2586 (3)0.205 (3)
H16A0.30440.13310.22120.307*
H16B0.28170.07400.29260.307*
H16C0.36980.01730.24470.307*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0690 (13)0.0819 (14)0.160 (2)0.0183 (10)0.0158 (13)0.0206 (13)
O20.0795 (13)0.0724 (13)0.1264 (16)0.0090 (10)0.0112 (11)0.0208 (11)
O30.0665 (12)0.0882 (15)0.169 (2)0.0181 (11)0.0143 (12)0.0307 (14)
O40.0608 (11)0.0900 (14)0.1280 (17)0.0102 (10)0.0193 (10)0.0165 (12)
N10.0748 (18)0.093 (2)0.237 (4)0.0125 (15)0.046 (2)0.060 (2)
C10.0668 (17)0.0684 (17)0.0917 (19)0.0034 (14)0.0007 (14)0.0048 (14)
C20.0591 (14)0.0654 (15)0.0775 (16)0.0036 (12)0.0031 (12)0.0013 (12)
C30.0570 (14)0.0715 (18)0.0993 (19)0.0082 (12)0.0090 (13)0.0062 (14)
C40.0631 (16)0.0731 (19)0.117 (2)0.0039 (14)0.0137 (15)0.0129 (16)
C50.0621 (16)0.0667 (16)0.111 (2)0.0084 (13)0.0059 (14)0.0116 (15)
C60.0563 (14)0.0651 (16)0.0821 (17)0.0020 (12)0.0004 (12)0.0021 (13)
C70.0604 (15)0.0667 (16)0.0747 (16)0.0012 (12)0.0006 (12)0.0007 (12)
C80.0611 (15)0.0721 (19)0.100 (2)0.0036 (14)0.0054 (14)0.0018 (15)
C90.0600 (17)0.119 (3)0.123 (2)0.0091 (17)0.0191 (16)0.007 (2)
C100.080 (2)0.156 (4)0.168 (4)0.000 (2)0.030 (2)0.036 (3)
C110.127 (4)0.280 (8)0.248 (7)0.001 (5)0.022 (4)0.138 (7)
C120.173 (6)0.301 (10)0.410 (13)0.007 (5)0.074 (6)0.230 (10)
C130.114 (3)0.073 (2)0.143 (3)0.0126 (18)0.009 (2)0.0249 (19)
C140.155 (4)0.088 (3)0.190 (4)0.007 (2)0.038 (3)0.042 (3)
C150.168 (4)0.148 (4)0.197 (5)0.010 (3)0.052 (4)0.041 (4)
C160.140 (4)0.228 (6)0.235 (6)0.002 (4)0.053 (4)0.094 (5)
Geometric parameters (Å, º) top
O1—C11.198 (3)C9—H9B0.970
O2—C11.331 (3)C10—C111.357 (6)
O2—C131.448 (4)C10—H10A0.970
O3—C81.197 (3)C10—H10B0.970
O4—C81.321 (3)C11—C121.468 (8)
O4—C91.442 (3)C11—H11A0.970
N1—C41.368 (4)C11—H11B0.970
N1—H1A0.83 (5)C12—H12A0.960
N1—H1B0.83 (6)C12—H12B0.960
C1—C21.478 (4)C12—H12C0.960
C2—C31.380 (4)C13—C141.481 (5)
C2—C71.382 (3)C13—H13A0.970
C3—C41.385 (4)C13—H13B0.970
C3—H3A0.930C14—C151.426 (7)
C4—C51.395 (4)C14—H14A0.970
C5—C61.377 (4)C14—H14B0.970
C5—H5A0.930C15—C161.513 (7)
C6—C71.385 (3)C15—H15A0.970
C6—C81.480 (4)C15—H15B0.970
C7—H7A0.930C16—H16A0.960
C9—C101.468 (5)C16—H16B0.960
C9—H9A0.970C16—H16C0.960
C1—O2—C13116.8 (2)C9—C10—H10B107.3
C8—O4—C9117.0 (2)H10A—C10—H10B106.9
C4—N1—H1A116 (4)C10—C11—C12118.9 (7)
C4—N1—H1B122 (4)C10—C11—H11A107.6
H1A—N1—H1B117 (5)C12—C11—H11A107.6
O1—C1—O2122.8 (2)C10—C11—H11B107.6
O1—C1—C2125.3 (3)C12—C11—H11B107.6
O2—C1—C2112.0 (2)H11A—C11—H11B107.0
C3—C2—C7120.6 (2)C11—C12—H12A109.5
C3—C2—C1117.5 (2)C11—C12—H12B109.5
C7—C2—C1121.9 (2)H12A—C12—H12B109.5
C2—C3—C4121.1 (2)C11—C12—H12C109.5
C2—C3—H3A119.4H12A—C12—H12C109.5
C4—C3—H3A119.4H12B—C12—H12C109.5
N1—C4—C3121.5 (2)O2—C13—C14107.1 (3)
N1—C4—C5120.7 (3)O2—C13—H13A110.3
C3—C4—C5117.8 (2)C14—C13—H13A110.3
C6—C5—C4121.3 (3)O2—C13—H13B110.3
C6—C5—H5A119.4C14—C13—H13B110.3
C4—C5—H5A119.4H13A—C13—H13B108.6
C5—C6—C7120.2 (2)C15—C14—C13120.2 (5)
C5—C6—C8118.2 (2)C15—C14—H14A107.3
C7—C6—C8121.5 (2)C13—C14—H14A107.3
C2—C7—C6119.0 (2)C15—C14—H14B107.3
C2—C7—H7A120.5C13—C14—H14B107.3
C6—C7—H7A120.5H14A—C14—H14B106.9
O3—C8—O4122.5 (2)C14—C15—C16115.7 (5)
O3—C8—C6124.7 (3)C14—C15—H15A108.4
O4—C8—C6112.8 (3)C16—C15—H15A108.4
O4—C9—C10107.6 (3)C14—C15—H15B108.4
O4—C9—H9A110.2C16—C15—H15B108.4
C10—C9—H9A110.2H15A—C15—H15B107.4
O4—C9—H9B110.2C15—C16—H16A109.5
C10—C9—H9B110.2C15—C16—H16B109.5
H9A—C9—H9B108.5H16A—C16—H16B109.5
C11—C10—C9120.2 (4)C15—C16—H16C109.5
C11—C10—H10A107.3H16A—C16—H16C109.5
C9—C10—H10A107.3H16B—C16—H16C109.5
C11—C10—H10B107.3
C13—O2—C1—O10.1 (5)C1—C2—C7—C6179.6 (2)
C13—O2—C1—C2179.6 (3)C5—C6—C7—C20.1 (4)
O1—C1—C2—C33.6 (4)C8—C6—C7—C2179.1 (2)
O2—C1—C2—C3176.9 (2)C9—O4—C8—O30.0 (4)
O1—C1—C2—C7176.5 (3)C9—O4—C8—C6179.1 (2)
O2—C1—C2—C73.0 (4)C5—C6—C8—O32.9 (5)
C7—C2—C3—C40.5 (4)C7—C6—C8—O3176.4 (3)
C1—C2—C3—C4179.6 (3)C5—C6—C8—O4178.0 (2)
C2—C3—C4—N1178.7 (3)C7—C6—C8—O42.7 (4)
C2—C3—C4—C50.0 (4)C8—O4—C9—C10176.6 (3)
N1—C4—C5—C6178.2 (3)O4—C9—C10—C1151.7 (6)
C3—C4—C5—C60.4 (5)C9—C10—C11—C12179.0 (7)
C4—C5—C6—C70.4 (4)C1—O2—C13—C14175.1 (3)
C4—C5—C6—C8179.6 (3)O2—C13—C14—C1556.2 (6)
C3—C2—C7—C60.5 (4)C13—C14—C15—C16178.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.83 (5)2.30 (6)3.110 (4)165 (6)
N1—H1B···O3ii0.83 (6)2.38 (6)3.120 (4)149 (5)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC16H23NO4
Mr293.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.4350 (19), 9.1640 (18), 20.166 (4)
β (°) 94.67 (3)
V3)1737.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.991, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
8863, 3169, 1612
Rint0.029
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.221, 1.04
No. of reflections3169
No. of parameters196
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.16

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.83 (5)2.30 (6)3.110 (4)165 (6)
N1—H1B···O3ii0.83 (6)2.38 (6)3.120 (4)149 (5)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z+1.
 

Acknowledgements

The authors acknowledge financial support from the Science Foundation of Maoming University.

References

First citationBruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDobson, A. J. & Gerkin, R. E. (1998). Acta Cryst. C54, 1503–1505.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds