organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,7-Di­methyl-1,8-naphthyridine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India
*Correspondence e-mail: hkfun@usm.my

(Received 5 June 2009; accepted 24 June 2009; online 4 July 2009)

The asymmetric unit of the title compound, C10H10N2, contains one half-mol­ecule with the two shared C atoms lying on a twofold rotation axis. The 1,8-naphthyridine is almost planar with a dihedral angle of 0.42 (3)° between the fused pyridine rings. In the crystal, mol­ecules are linked into infinite chains along the c axis by inter­molecular C—H⋯N hydrogen bonds, generating R22(8) ring motifs. In addition, the crystal structure is further stabilized by C—H⋯π inter­actions.

Related literature

For applications of naphthyridines, see: Badawneh et al. (2001[Badawneh, M., Ferrarini, P. L., Calderone, V., Manera, C., Martinotti, E., Mori, C., Saccomanni, G. & Testai, L. (2001). Eur. J. Med. Chem. 36, 925-934.]); Hawes et al. (1977[Hawes, E. M., Gorecki, D. K. J. & Gedir, G. G. (1977). J. Med. Chem. 20, 838-841.]); Gorecki & Hawes (1977[Gorecki, D. K. J. & Hawes, E. M. (1977). J. Med. Chem. 20, 124-128.]). For mol­ecular recognition chemistry of naphthyridines, see: Goswami & Mukherjee (1997[Goswami, S. & Mukherjee, R. (1997). Tetrahedron Lett. 38, 1619-1621.]); Goswami et al. (2001[Goswami, S., Ghosh, K. & Mukherjee, R. (2001). Tetrahedron, 57, 4987-4993.], 2005[Goswami, S., Mukherjee, R., Mukherjee, S., Jana, S., Maity, A. C. & Adak, A. K. (2005). Molecules, 10, 929-934.]). For the preparation of 2,7-dimethyl-[1,8]naphthyridine, see: Chandler et al. (1982[Chandler, C. J., Deady, L. W., Reiss, J. A. & Tzimos, V. J. (1982). J. Heterocycl. Chem. 19, 1017-1019.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N2

  • Mr = 158.20

  • Orthorhombic, F d d 2

  • a = 13.3977 (2) Å

  • b = 19.3492 (4) Å

  • c = 6.3089 (1) Å

  • V = 1635.49 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.57 × 0.41 × 0.24 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.939, Tmax = 0.981

  • 15454 measured reflections

  • 1153 independent reflections

  • 1116 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.098

  • S = 1.09

  • 1153 reflections

  • 57 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯N1i 0.93 2.56 3.4889 (9) 175
C6—H6CCg1ii 0.96 2.78 3.5742 (8) 140
C6—H6CCg2iii 0.96 2.78 3.5742 (8) 140
Symmetry codes: (i) x, y, z+1; (ii) [-x-{\script{3\over 4}}, y+{\script{3\over 4}}, z-{\script{1\over 4}}]; (iii) [x-{\script{1\over 4}}, -y+{\script{1\over 4}}, z-{\script{1\over 4}}]. Cg1 and Cg2 are the centroids of the N1/C1–C5 and C1–C2/C3A–C5A/N1A rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Due to their wide applications in medicine, naphthyridines are one of the most useful group of compounds. They are used as antihypertensives, antitumor agents, immunostimulants and herbicide safeners (Badawneh et al., 2001; Hawes et al., 1977; Gorecki et al., 1977). Naphthyridines are also used as a key molecule in molecular recognition chemistry (Goswami & Mukherjee, 1997; Goswami et al., 2005; 2001; Sheldrick, 2008). We report here the single crystal X-ray structure.

In the title compound (I), (Fig. 1), the C1 and C2 atoms are lying on twofold rotation axis [symmetry code: -x, -y, z]. The dihedral angle between the two pyridine rings is equal to 0.42 (3)° indicating that the 1,8-naphthyridine is almost planar. The molecules are linked together into infinite chains by the intermolecular C3—H3A···N1 hydrogen bonds along the c axis (Fig. 2) generating R22(8) ring motifs (Bernstein et al., 1995). The crystal structure is further stabilized by the C—H···π interactions (Table 1).

Related literature top

For applications of naphthyridines, see: Badawneh et al. (2001); Hawes et al. (1977); Gorecki et al. (1977). For molecular recognition chemistry of naphthyridines, see: Goswami & Mukherjee (1997); Goswami et al. (2001, 2005). For preparation of 2,7-dimethyl-[1,8]naphthyridine, see: Chandler et al. (1982). Cg1 and Cg2 are the centroids of the N1/C1–C5 and C1–C2/C3A–C5A/N1A rings, respectively. For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

2,7-dimethyl-[1,8]naphthyridine was prepared according to the literature procedure (Chandler et al., 1982). In a sample bottle, 10 mg of compound was taken and dissolved in CHCl3 and by slow evaporation the crystals are formed as colorless blocks.

Refinement top

All hydrogen atoms were positioned geometrically with a riding model approximation with C—H = 0.93-0.96 Å and Uiso(H) = 1.2 Ueq(C). The rotating-group model was applied for the methyl groups. As there are not enough anomalous dispersion to determine the absolute structure, 923 Friedel pairs were merged before the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms. Symmetry code: (i) -x, -y, z.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the a axis, showing the molecules are linked along the c axis. Intermolecular hydrogen bonds are shown in as dashed lines.
2,7-Dimethyl-1,8-naphthyridine top
Crystal data top
C10H10N2F(000) = 672
Mr = 158.20Dx = 1.285 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 9922 reflections
a = 13.3977 (2) Åθ = 3.0–40.6°
b = 19.3492 (4) ŵ = 0.08 mm1
c = 6.3089 (1) ÅT = 100 K
V = 1635.49 (5) Å3Block, colourless
Z = 80.57 × 0.41 × 0.24 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1153 independent reflections
Radiation source: fine-focus sealed tube1116 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 37.5°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2122
Tmin = 0.939, Tmax = 0.981k = 3231
15454 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0689P)2 + 0.3523P]
where P = (Fo2 + 2Fc2)/3
1153 reflections(Δ/σ)max < 0.001
57 parametersΔρmax = 0.51 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
C10H10N2V = 1635.49 (5) Å3
Mr = 158.20Z = 8
Orthorhombic, Fdd2Mo Kα radiation
a = 13.3977 (2) ŵ = 0.08 mm1
b = 19.3492 (4) ÅT = 100 K
c = 6.3089 (1) Å0.57 × 0.41 × 0.24 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1153 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1116 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.981Rint = 0.024
15454 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.098H-atom parameters constrained
S = 1.09Δρmax = 0.51 e Å3
1153 reflectionsΔρmin = 0.25 e Å3
57 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.01020 (4)0.05928 (3)0.32666 (9)0.01333 (14)
C10.00000.00000.44228 (13)0.01141 (18)
C20.00000.00000.66711 (15)0.01275 (18)
C30.01175 (6)0.06389 (4)0.77384 (11)0.01521 (15)
H3A0.01290.06580.92110.018*
C40.02138 (6)0.12274 (4)0.65545 (14)0.01597 (16)
H4A0.02890.16530.72180.019*
C50.01984 (5)0.11846 (4)0.42997 (11)0.01352 (15)
C60.02718 (6)0.18360 (4)0.30155 (15)0.01878 (15)
H6A0.03810.17210.15540.028*
H6B0.08190.21100.35250.028*
H6C0.03380.20940.31470.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0165 (3)0.0124 (3)0.0111 (3)0.00003 (19)0.00022 (18)0.00128 (16)
C10.0132 (4)0.0123 (4)0.0087 (4)0.0005 (3)0.0000.000
C20.0148 (4)0.0138 (4)0.0096 (4)0.0002 (3)0.0000.000
C30.0189 (3)0.0159 (3)0.0108 (3)0.0010 (2)0.00012 (19)0.0019 (2)
C40.0196 (4)0.0138 (3)0.0144 (3)0.0006 (2)0.0004 (2)0.0025 (2)
C50.0150 (3)0.0124 (3)0.0131 (3)0.0001 (2)0.0002 (2)0.0010 (2)
C60.0229 (3)0.0137 (3)0.0197 (3)0.0013 (2)0.0009 (3)0.0038 (2)
Geometric parameters (Å, º) top
N1—C51.3238 (8)C3—H3A0.9300
N1—C11.3662 (7)C4—C51.4251 (11)
C1—N1i1.3662 (7)C4—H4A0.9300
C1—C21.4184 (13)C5—C61.5017 (10)
C2—C3i1.4165 (9)C6—H6A0.9600
C2—C31.4165 (9)C6—H6B0.9600
C3—C41.3678 (10)C6—H6C0.9600
C5—N1—C1118.23 (6)C3—C4—H4A120.2
N1i—C1—N1115.46 (7)C5—C4—H4A120.2
N1i—C1—C2122.27 (4)N1—C5—C4122.90 (7)
N1—C1—C2122.27 (4)N1—C5—C6117.83 (6)
C3i—C2—C3123.23 (9)C4—C5—C6119.26 (7)
C3i—C2—C1118.39 (4)C5—C6—H6A109.5
C3—C2—C1118.38 (4)C5—C6—H6B109.5
C4—C3—C2118.51 (7)H6A—C6—H6B109.5
C4—C3—H3A120.7C5—C6—H6C109.5
C2—C3—H3A120.7H6A—C6—H6C109.5
C3—C4—C5119.69 (7)H6B—C6—H6C109.5
C5—N1—C1—N1i179.65 (7)C1—C2—C3—C40.76 (8)
C5—N1—C1—C20.35 (7)C2—C3—C4—C50.28 (11)
N1i—C1—C2—C3i0.46 (5)C1—N1—C5—C40.88 (11)
N1—C1—C2—C3i179.54 (5)C1—N1—C5—C6177.77 (5)
N1i—C1—C2—C3179.54 (5)C3—C4—C5—N10.57 (13)
N1—C1—C2—C30.46 (5)C3—C4—C5—C6178.06 (6)
C3i—C2—C3—C4179.25 (8)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···N1ii0.932.563.4889 (9)175
C6—H6C···Cg1iii0.962.783.5742 (8)140
C6—H6C···Cg2iv0.962.783.5742 (8)140
Symmetry codes: (ii) x, y, z+1; (iii) x3/4, y+3/4, z1/4; (iv) x1/4, y+1/4, z1/4.

Experimental details

Crystal data
Chemical formulaC10H10N2
Mr158.20
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)100
a, b, c (Å)13.3977 (2), 19.3492 (4), 6.3089 (1)
V3)1635.49 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.57 × 0.41 × 0.24
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.939, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
15454, 1153, 1116
Rint0.024
(sin θ/λ)max1)0.856
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.098, 1.09
No. of reflections1153
No. of parameters57
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.25

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···N1i0.93002.56003.4889 (9)175.00
C6—H6C···Cg1ii0.96002.78003.5742 (8)140.00
C6—H6C···Cg2iii0.96002.78003.5742 (8)140.00
Symmetry codes: (i) x, y, z+1; (ii) x3/4, y+3/4, z1/4; (iii) x1/4, y+1/4, z1/4.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5523-2009.

Acknowledgements

HKF thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. CSY thanks the Malaysian Government and Universiti Sains Malaysia for the award of the post of Research Officer under the Science Fund grant No. 305/PFIZIK/613312. SG thanks the DST (SR/S1/OC-13/2005), Government of India, for financial support. NKD thanks the UGC, Government of India, for a research fellowship.

References

First citationBadawneh, M., Ferrarini, P. L., Calderone, V., Manera, C., Martinotti, E., Mori, C., Saccomanni, G. & Testai, L. (2001). Eur. J. Med. Chem. 36, 925–934.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandler, C. J., Deady, L. W., Reiss, J. A. & Tzimos, V. J. (1982). J. Heterocycl. Chem. 19, 1017–1019.  CrossRef CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGorecki, D. K. J. & Hawes, E. M. (1977). J. Med. Chem. 20, 124–128.  CrossRef CAS Web of Science Google Scholar
First citationGoswami, S., Ghosh, K. & Mukherjee, R. (2001). Tetrahedron, 57, 4987–4993.  Web of Science CrossRef CAS Google Scholar
First citationGoswami, S. & Mukherjee, R. (1997). Tetrahedron Lett. 38, 1619–1621.  CrossRef CAS Web of Science Google Scholar
First citationGoswami, S., Mukherjee, R., Mukherjee, S., Jana, S., Maity, A. C. & Adak, A. K. (2005). Molecules, 10, 929–934.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHawes, E. M., Gorecki, D. K. J. & Gedir, G. G. (1977). J. Med. Chem. 20, 838–841.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds