organic compounds
Bis(3-carboxyanilinum) bis(perchlorate) monohydrate
aLaboratoire de Chimie Moléculaire, du Contrôle, de l'Environnement et des Mesures Physico-Chimiques, Faculté des Sciences Exactes, Département de Chimie, Université Mentouri de Constantine, 25000 Constantine, Algeria, and bCristallographie, Résonance Magnétique et Modélisation (CRM2), Université Henri Poincaré, Nancy 1, Faculté des Sciences, BP 70239, 54506 Vandoeuvre lès Nancy CEDEX, France
*Correspondence e-mail: lamiabendjeddou@yahoo.fr
In the structure of the title compound, 2C7H8NO2+·2ClO4−·H2O, the ions are connected via N—H⋯O, N—H⋯(O,O), O—H⋯O, O—H⋯(O,O) and C—H⋯O hydrogen bonds into a three-dimensional network.
Related literature
Hydrogen bonds play a crucial role in supramolecular organization (Jeffrey, 1997; Nangia & Desiraju, 1998). Knowledge of hydrogen-bond geometries (Taylor & Kennard, 1984; Murray-Rust & Glusker, 1984) and motif formation is vital in the modeling of protein–ligand interactions (Tintelnot & Andrews, 1989; Böhm & Klebe, 1996). For hydriogen-bond motifs, see: Bernstein et al. (1995). For the structures of organic salts of see: Bendjeddou et al. (2003); Cherouana et al. (2003). For a description of the Cambridge Structural Database, see: Allen (2002);
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995), Mercury (Macrae et al., 2006) and POV-RAY (Persistence of Vision Team, 2004).
Supporting information
10.1107/S1600536809025173/bq2150sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809025173/bq2150Isup2.hkl
m-carboxyanilinium acid and perchloric acid were mixed in a 2:2 stoichiometric ratio and dissolved in water. Crystal were obtained by slow evaporation.
H atoms were positioned geometrically and refined in the riding-model approximation, with C—H = 0.97 Å, N—H = 0.89 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(O). The H atoms of the water molecule were located in a difference Fourier map and reined as riding, with O—H = 0.85 Å and Uiso(H) = 1.5Ueq(O).
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995), Mercury (Macrae et al., 2006) and POVRay (Persistence of Vision Team, 2004).Fig. 1. The asymmetric unit of (I), showing the crystallographic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii. | |
Fig. 2. A packing diagram for the title compound, viewed along the a axis, showing the mixture layers. | |
Fig. 3. Part of the crystal structure, showing the formation of dimers A and B via O—H···O hydrogen bonds. | |
Fig. 4. A view of the two-dimensional O—H···O hydrogen-bonded network paralel to the (100) plane of (I), showing the aggregation of R44(12) and R24(8) hydrogen-bonding motifs. Atoms marked with an ampersand (&), an at sign (@), a hash symbol (#) or a dollar sign ($) are at the symmetry positions (1 + x, y, z), (-1 + x, y, z), (1 - x, 1 - y, 1 - z), (2 - x, 1 - y, 1 - z), respectively. | |
Fig. 5. Part of the crystal structure, showing the aggregation of C22(4) R34(10) and R32(6) motifs via N—H···O hydrogen bonds. Atoms marked with an ampersand (&), an at sign (@), a hash symbol (#), dollar sign ($), percent sign (%), or a star sign (*) are at the symmetry positions (1 - x, 1 - y, 1 - z), (-1 + x, y, z), (1 - x, y, 1 - z), (-x, -y, 1 - z), (1 + x, y, z), (2 - x, 1 - y, 1 - z), respectively. | |
Fig. 6. A view of part of the crystal structure of (I), showing the formation of R46(22) and R56(30) rings. Atoms marked with an ampersand (&), a hash symbol (#), dollar sign ($), percent sign (%), or a star sign (*) are at the symmetry positions (2 - x, -y, 1 - z), (-x, 1 - y, -z), (1 - x, 1 - y, -z), (1 + x, y, z), (2 - x, 1 - y, 1 - z), respectively. |
2C7H8NO2+·2ClO4−·H2O | Z = 2 |
Mr = 493.20 | F(000) = 508 |
Triclinic, P1 | Dx = 1.669 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 4.9170 (3) Å | Cell parameters from 7071 reflections |
b = 12.4030 (2) Å | θ = 3.3–32.6° |
c = 17.1030 (4) Å | µ = 0.41 mm−1 |
α = 70.520 (2)° | T = 120 K |
β = 88.697 (3)° | Needle, brown |
γ = 86.166 (4)° | 0.3 × 0.03 × 0.02 mm |
V = 981.13 (7) Å3 |
Enraf–Nonius KappaCCD diffractometer | 4775 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.049 |
Graphite monochromator | θmax = 32.6°, θmin = 3.3° |
ω scans | h = 0→7 |
45183 measured reflections | k = −18→18 |
7071 independent reflections | l = −25→25 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.039 | w = 1/[σ2(Fo2) + (0.0526P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.102 | (Δ/σ)max = 0.021 |
S = 0.99 | Δρmax = 0.45 e Å−3 |
7071 reflections | Δρmin = −0.57 e Å−3 |
292 parameters |
2C7H8NO2+·2ClO4−·H2O | γ = 86.166 (4)° |
Mr = 493.20 | V = 981.13 (7) Å3 |
Triclinic, P1 | Z = 2 |
a = 4.9170 (3) Å | Mo Kα radiation |
b = 12.4030 (2) Å | µ = 0.41 mm−1 |
c = 17.1030 (4) Å | T = 120 K |
α = 70.520 (2)° | 0.3 × 0.03 × 0.02 mm |
β = 88.697 (3)° |
Enraf–Nonius KappaCCD diffractometer | 4775 reflections with I > 2σ(I) |
45183 measured reflections | Rint = 0.049 |
7071 independent reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.102 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | Δρmax = 0.45 e Å−3 |
7071 reflections | Δρmin = −0.57 e Å−3 |
292 parameters |
x | y | z | Uiso*/Ueq | ||
O11 | 0.2368 (2) | 0.58575 (9) | 0.00162 (6) | 0.0167 (3) | |
O12 | 0.1451 (2) | 0.42214 (9) | 0.10223 (6) | 0.0176 (3) | |
N1 | 0.6845 (3) | 0.40582 (11) | 0.35093 (7) | 0.0142 (4) | |
C11 | 0.2756 (3) | 0.51695 (13) | 0.07149 (9) | 0.0136 (4) | |
C12 | 0.4736 (3) | 0.53492 (13) | 0.12947 (9) | 0.0131 (4) | |
C13 | 0.4963 (3) | 0.45953 (13) | 0.21027 (9) | 0.0132 (4) | |
C14 | 0.6728 (3) | 0.48155 (13) | 0.26416 (9) | 0.0127 (4) | |
C15 | 0.8297 (3) | 0.57585 (13) | 0.23929 (9) | 0.0154 (4) | |
C16 | 0.8057 (3) | 0.65062 (13) | 0.15814 (9) | 0.0172 (5) | |
C17 | 0.6279 (3) | 0.63090 (13) | 0.10338 (9) | 0.0154 (4) | |
O21 | 0.2424 (2) | 0.08889 (10) | −0.00149 (6) | 0.0195 (3) | |
O22 | 0.3663 (3) | −0.06863 (10) | 0.10513 (7) | 0.0231 (4) | |
N2 | −0.2091 (3) | −0.04135 (11) | 0.34838 (7) | 0.0132 (3) | |
C21 | 0.2141 (3) | 0.02587 (13) | 0.07045 (9) | 0.0162 (4) | |
C22 | 0.0034 (3) | 0.05317 (13) | 0.12572 (9) | 0.0146 (4) | |
C23 | −0.0102 (3) | −0.01242 (13) | 0.20967 (9) | 0.0137 (4) | |
C24 | −0.1986 (3) | 0.02235 (13) | 0.25877 (9) | 0.0130 (4) | |
C25 | −0.3762 (3) | 0.11787 (14) | 0.22733 (9) | 0.0171 (4) | |
C26 | −0.3649 (3) | 0.18137 (14) | 0.14357 (10) | 0.0193 (5) | |
C27 | −0.1724 (3) | 0.14958 (14) | 0.09290 (9) | 0.0173 (4) | |
Cl1 | 0.58901 (7) | 0.29103 (3) | 0.61432 (2) | 0.0133 (1) | |
O1 | 0.7010 (2) | 0.36508 (9) | 0.53790 (6) | 0.0191 (3) | |
O2 | 0.6783 (2) | 0.32216 (11) | 0.68248 (7) | 0.0237 (4) | |
O3 | 0.2956 (2) | 0.30140 (10) | 0.60921 (7) | 0.0208 (3) | |
O4 | 0.6805 (2) | 0.17339 (9) | 0.62552 (7) | 0.0201 (3) | |
Cl2 | 0.14254 (7) | 0.15743 (3) | 0.40892 (2) | 0.0128 (1) | |
O5 | 0.2017 (3) | 0.17301 (10) | 0.48568 (7) | 0.0244 (4) | |
O6 | −0.1515 (2) | 0.15994 (10) | 0.39893 (7) | 0.0220 (3) | |
O7 | 0.2591 (2) | 0.04883 (9) | 0.40697 (7) | 0.0207 (3) | |
O8 | 0.2470 (2) | 0.24934 (9) | 0.34137 (7) | 0.0205 (3) | |
O1W | 0.8260 (2) | 0.56613 (10) | 0.57195 (7) | 0.0156 (3) | |
H1A | 0.82677 | 0.42111 | 0.37583 | 0.0212* | |
H1B | 0.70185 | 0.33315 | 0.35272 | 0.0212* | |
H1C | 0.53190 | 0.41728 | 0.37684 | 0.0212* | |
H12 | 0.02648 | 0.42104 | 0.06961 | 0.0263* | |
H13 | 0.39432 | 0.39521 | 0.22790 | 0.0159* | |
H15 | 0.94884 | 0.58893 | 0.27615 | 0.0185* | |
H16 | 0.90976 | 0.71430 | 0.14051 | 0.0206* | |
H17 | 0.61145 | 0.68159 | 0.04935 | 0.0185* | |
H2A | −0.22591 | 0.00789 | 0.37622 | 0.0198* | |
H2B | −0.05642 | −0.08563 | 0.36380 | 0.0198* | |
H2C | −0.35139 | −0.08481 | 0.35926 | 0.0198* | |
H22 | 0.48980 | −0.07414 | 0.07338 | 0.0345* | |
H23 | 0.10478 | −0.07783 | 0.23186 | 0.0165* | |
H25 | −0.50154 | 0.13923 | 0.26186 | 0.0205* | |
H26 | −0.48533 | 0.24494 | 0.12131 | 0.0232* | |
H27 | −0.16175 | 0.19302 | 0.03700 | 0.0208* | |
H1W | 0.826 (4) | 0.6178 (12) | 0.5253 (8) | 0.037 (6)* | |
H2W | 0.827 (4) | 0.5046 (10) | 0.5589 (11) | 0.039 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O11 | 0.0196 (6) | 0.0163 (6) | 0.0123 (5) | −0.0034 (4) | −0.0031 (4) | −0.0017 (4) |
O12 | 0.0198 (6) | 0.0159 (6) | 0.0155 (5) | −0.0059 (5) | −0.0060 (4) | −0.0020 (4) |
N1 | 0.0141 (6) | 0.0172 (7) | 0.0120 (6) | −0.0003 (5) | −0.0017 (5) | −0.0059 (5) |
C11 | 0.0135 (7) | 0.0131 (7) | 0.0144 (7) | −0.0001 (6) | 0.0004 (6) | −0.0049 (6) |
C12 | 0.0130 (7) | 0.0140 (7) | 0.0124 (7) | −0.0006 (6) | −0.0006 (5) | −0.0044 (6) |
C13 | 0.0129 (7) | 0.0123 (7) | 0.0148 (7) | −0.0008 (6) | 0.0000 (5) | −0.0049 (6) |
C14 | 0.0131 (7) | 0.0134 (7) | 0.0114 (7) | 0.0002 (6) | 0.0009 (5) | −0.0040 (5) |
C15 | 0.0144 (7) | 0.0173 (8) | 0.0165 (7) | −0.0013 (6) | −0.0018 (6) | −0.0080 (6) |
C16 | 0.0173 (8) | 0.0144 (8) | 0.0200 (8) | −0.0043 (6) | 0.0009 (6) | −0.0054 (6) |
C17 | 0.0161 (8) | 0.0147 (7) | 0.0134 (7) | −0.0008 (6) | −0.0003 (6) | −0.0020 (6) |
O21 | 0.0220 (6) | 0.0200 (6) | 0.0128 (5) | 0.0032 (5) | 0.0050 (4) | −0.0019 (4) |
O22 | 0.0253 (7) | 0.0218 (6) | 0.0164 (6) | 0.0091 (5) | 0.0070 (5) | −0.0013 (5) |
N2 | 0.0145 (6) | 0.0139 (6) | 0.0115 (6) | −0.0022 (5) | 0.0010 (5) | −0.0044 (5) |
C21 | 0.0172 (8) | 0.0159 (8) | 0.0155 (7) | 0.0011 (6) | 0.0004 (6) | −0.0058 (6) |
C22 | 0.0168 (7) | 0.0145 (7) | 0.0122 (7) | −0.0008 (6) | 0.0022 (6) | −0.0043 (6) |
C23 | 0.0138 (7) | 0.0128 (7) | 0.0130 (7) | 0.0003 (6) | −0.0009 (5) | −0.0024 (6) |
C24 | 0.0147 (7) | 0.0125 (7) | 0.0112 (7) | −0.0032 (6) | 0.0006 (5) | −0.0029 (5) |
C25 | 0.0174 (8) | 0.0177 (8) | 0.0163 (7) | 0.0004 (6) | 0.0044 (6) | −0.0063 (6) |
C26 | 0.0216 (8) | 0.0160 (8) | 0.0167 (8) | 0.0064 (6) | 0.0009 (6) | −0.0020 (6) |
C27 | 0.0214 (8) | 0.0157 (8) | 0.0119 (7) | 0.0015 (6) | 0.0021 (6) | −0.0012 (6) |
Cl1 | 0.0122 (2) | 0.0142 (2) | 0.0143 (2) | −0.0018 (1) | −0.0003 (1) | −0.0057 (1) |
O1 | 0.0220 (6) | 0.0172 (6) | 0.0156 (5) | −0.0045 (5) | 0.0030 (4) | −0.0018 (4) |
O2 | 0.0246 (6) | 0.0332 (7) | 0.0196 (6) | −0.0101 (5) | −0.0005 (5) | −0.0156 (5) |
O3 | 0.0109 (5) | 0.0266 (7) | 0.0263 (6) | 0.0002 (5) | 0.0003 (4) | −0.0109 (5) |
O4 | 0.0175 (6) | 0.0120 (5) | 0.0289 (6) | 0.0014 (4) | −0.0016 (5) | −0.0048 (5) |
Cl2 | 0.0145 (2) | 0.0117 (2) | 0.0122 (2) | −0.0018 (1) | 0.0007 (1) | −0.0039 (1) |
O5 | 0.0355 (7) | 0.0256 (7) | 0.0138 (5) | −0.0047 (5) | −0.0032 (5) | −0.0081 (5) |
O6 | 0.0127 (5) | 0.0219 (6) | 0.0340 (7) | −0.0021 (5) | 0.0002 (5) | −0.0127 (5) |
O7 | 0.0203 (6) | 0.0123 (5) | 0.0302 (6) | 0.0016 (4) | 0.0008 (5) | −0.0087 (5) |
O8 | 0.0284 (7) | 0.0152 (6) | 0.0155 (5) | −0.0072 (5) | 0.0062 (5) | −0.0013 (4) |
O1W | 0.0175 (6) | 0.0136 (5) | 0.0145 (5) | −0.0022 (4) | −0.0012 (4) | −0.0028 (4) |
Cl1—O2 | 1.4307 (11) | N1—H1C | 0.89 |
Cl1—O3 | 1.4418 (11) | C22—C27 | 1.389 (2) |
Cl1—O1 | 1.4454 (11) | C22—C23 | 1.397 (2) |
Cl1—O4 | 1.4484 (11) | C22—C21 | 1.484 (2) |
Cl2—O5 | 1.4282 (11) | C24—C23 | 1.379 (2) |
Cl2—O7 | 1.4386 (11) | C24—C25 | 1.383 (2) |
Cl2—O8 | 1.4390 (11) | C14—C13 | 1.3833 (19) |
Cl2—O6 | 1.4568 (11) | C14—C15 | 1.385 (2) |
O12—C11 | 1.3208 (17) | C12—C13 | 1.388 (2) |
O12—H12 | 0.82 | C12—C17 | 1.394 (2) |
O1W—H2W | 0.863 (9) | C12—C11 | 1.484 (2) |
O1W—H1W | 0.840 (9) | C27—C26 | 1.394 (2) |
O11—C11 | 1.2252 (17) | C27—H27 | 0.93 |
O22—C21 | 1.3135 (19) | C16—C17 | 1.386 (2) |
O22—H22 | 0.82 | C16—C15 | 1.391 (2) |
O21—C21 | 1.2286 (18) | C16—H16 | 0.93 |
N2—C24 | 1.4732 (18) | C23—H23 | 0.93 |
N2—H2A | 0.89 | C15—H15 | 0.93 |
N2—H2B | 0.89 | C25—C26 | 1.388 (2) |
N2—H2C | 0.89 | C25—H25 | 0.93 |
N1—C14 | 1.4679 (18) | C17—H17 | 0.93 |
N1—H1A | 0.89 | C13—H13 | 0.93 |
N1—H1B | 0.89 | C26—H26 | 0.93 |
O2—Cl1—O3 | 110.41 (7) | C15—C14—N1 | 119.21 (13) |
O2—Cl1—O1 | 109.66 (7) | C13—C12—C17 | 120.21 (13) |
O3—Cl1—O1 | 109.24 (7) | C13—C12—C11 | 120.24 (13) |
O2—Cl1—O4 | 109.82 (7) | C17—C12—C11 | 119.48 (13) |
O3—Cl1—O4 | 108.57 (7) | O11—C11—O12 | 123.69 (13) |
O1—Cl1—O4 | 109.11 (7) | O11—C11—C12 | 122.07 (13) |
O5—Cl2—O7 | 110.85 (7) | O12—C11—C12 | 114.24 (13) |
O5—Cl2—O8 | 109.49 (7) | O21—C21—O22 | 123.78 (14) |
O7—Cl2—O8 | 110.20 (7) | O21—C21—C22 | 121.54 (14) |
O5—Cl2—O6 | 109.62 (7) | O22—C21—C22 | 114.67 (13) |
O7—Cl2—O6 | 108.29 (7) | C22—C27—C26 | 120.12 (14) |
O8—Cl2—O6 | 108.34 (7) | C22—C27—H27 | 119.9 |
C11—O12—H12 | 109.5 | C26—C27—H27 | 119.9 |
H2W—O1W—H1W | 102.4 (15) | C17—C16—C15 | 120.47 (14) |
C21—O22—H22 | 109.5 | C17—C16—H16 | 119.8 |
C24—N2—H2A | 109.5 | C15—C16—H16 | 119.8 |
C24—N2—H2B | 109.5 | C24—C23—C22 | 118.26 (14) |
H2A—N2—H2B | 109.5 | C24—C23—H23 | 120.9 |
C24—N2—H2C | 109.5 | C22—C23—H23 | 120.9 |
H2A—N2—H2C | 109.5 | C14—C15—C16 | 118.76 (14) |
H2B—N2—H2C | 109.5 | C14—C15—H15 | 120.6 |
C14—N1—H1A | 109.5 | C16—C15—H15 | 120.6 |
C14—N1—H1B | 109.5 | C24—C25—C26 | 119.11 (14) |
H1A—N1—H1B | 109.5 | C24—C25—H25 | 120.4 |
C14—N1—H1C | 109.5 | C26—C25—H25 | 120.4 |
H1A—N1—H1C | 109.5 | C16—C17—C12 | 119.84 (14) |
H1B—N1—H1C | 109.5 | C16—C17—H17 | 120.1 |
C27—C22—C23 | 120.41 (14) | C12—C17—H17 | 120.1 |
C27—C22—C21 | 118.25 (13) | C14—C13—C12 | 118.99 (13) |
C23—C22—C21 | 121.26 (14) | C14—C13—H13 | 120.5 |
C23—C24—C25 | 122.28 (14) | C12—C13—H13 | 120.5 |
C23—C24—N2 | 119.74 (13) | C25—C26—C27 | 119.79 (15) |
C25—C24—N2 | 117.96 (13) | C25—C26—H26 | 120.1 |
C13—C14—C15 | 121.73 (14) | C27—C26—H26 | 120.1 |
C13—C14—N1 | 119.00 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1Wi | 0.8900 | 1.9800 | 2.8664 (18) | 171.00 |
N1—H1B···O6ii | 0.8900 | 2.1100 | 2.9421 (19) | 156.00 |
N1—H1B···O8 | 0.8900 | 2.5700 | 3.0343 (18) | 114.00 |
N1—H1C···O1Wiii | 0.8900 | 1.9800 | 2.8636 (18) | 174.00 |
O1W—H1W···O1i | 0.840 (14) | 2.534 (19) | 2.9435 (14) | 111.2 (15) |
O1W—H1W···O3iii | 0.840 (14) | 2.258 (14) | 3.0356 (16) | 153.9 (16) |
N2—H2A···O6 | 0.8900 | 2.1000 | 2.9336 (19) | 155.00 |
N2—H2A···O7 | 0.8900 | 2.5700 | 2.9584 (18) | 107.00 |
N2—H2B···O4iv | 0.8900 | 2.0600 | 2.9382 (18) | 168.00 |
N2—H2C···O3v | 0.8900 | 2.5500 | 3.1176 (19) | 122.00 |
N2—H2C···O4v | 0.8900 | 1.9800 | 2.8683 (18) | 175.00 |
O1W—H2W···O1 | 0.863 (14) | 2.019 (15) | 2.8504 (17) | 161.4 (18) |
O12—H12···O11vi | 0.8200 | 1.8200 | 2.6425 (14) | 178.00 |
O22—H22···O21vii | 0.8200 | 1.8200 | 2.6428 (17) | 178.00 |
C13—H13···O8 | 0.9300 | 2.3100 | 3.1193 (19) | 145.00 |
C15—H15···O2i | 0.9300 | 2.4300 | 3.3058 (19) | 156.00 |
C23—H23···O4iv | 0.9300 | 2.5500 | 3.2529 (19) | 133.00 |
C25—H25···O8viii | 0.9300 | 2.4900 | 3.384 (2) | 162.00 |
C27—H27···O11vi | 0.9300 | 2.602 | 3.136 (2) | 117.05 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y, −z+1; (v) −x, −y, −z+1; (vi) −x, −y+1, −z; (vii) −x+1, −y, −z; (viii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | 2C7H8NO2+·2ClO4−·H2O |
Mr | 493.20 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 120 |
a, b, c (Å) | 4.9170 (3), 12.4030 (2), 17.1030 (4) |
α, β, γ (°) | 70.520 (2), 88.697 (3), 86.166 (4) |
V (Å3) | 981.13 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.41 |
Crystal size (mm) | 0.3 × 0.03 × 0.02 |
Data collection | |
Diffractometer | Enraf–Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 45183, 7071, 4775 |
Rint | 0.049 |
(sin θ/λ)max (Å−1) | 0.757 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.102, 0.99 |
No. of reflections | 7071 |
No. of parameters | 292 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.45, −0.57 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995), Mercury (Macrae et al., 2006) and POVRay (Persistence of Vision Team, 2004).
D—H···A | D—A | H···A | D···A | D—H···A | Motifs |
N1—H1A···O1Wi | 0.89 | 1.98 | 2.8664 (18) | 171 | D |
N1—H1B···O6ii | 0.89 | 2.11 | 2.9421 (19) | 156 | D |
N1—H1B···O8 | 0.89 | 2.57 | 3.0343 (18) | 114 | D |
N1—H1C···O1Wiii | 0.89 | 1.98 | 2.8636 (18) | 174 | D |
O1W—H1W···O1i | 0.840 (14) | 2.534 (19) | 2.9435 (14) | 111.2 (15) | D |
O1W—H1W···O3iii | 0.840 (14) | 2.258 (14) | 3.0356 (16) | 153.9 (16) | D |
N2—H2A···O6 | 0.89 | 2.10 | 2.9336 (19) | 155 | D |
N2—H2A···O7 | 0.89 | 2.57 | 2.9584 (18) | 107 | D |
N2—H2B···O4iv | 0.89 | 2.06 | 2.9382 (18) | 168 | D |
N2—H2C···O3v | 0.89 | 2.55 | 3.1176 (19) | 122 | D |
N2—H2C···O4v | 0.89 | 1.98 | 2.8683 (18) | 175 | D |
O1W—H2W···O1 | 0.863 (14) | 2.019 (15) | 2.8504 (17) | 161.4 (18) | D |
O12—H12···O11vi | 0.82 | 1.82 | 2.6425 (14) | 178 | R22(8) |
O22—H22···O21vii | 0.82 | 1.82 | 2.6428 (17) | 178 | R22(8) |
C13—H13···O8 | 0.93 | 2.31 | 3.1193 (19) | 145 | D |
C15—H15···O2i | 0.93 | 2.43 | 3.3058 (19) | 156 | D |
C23—H23···O4iv | 0.93 | 2.55 | 3.2529 (19) | 133 | D |
C25—H25···O8viii | 0.93 | 2.49 | 3.384 (2) | 162 | D |
C27—H27···O11vi | 0.93 | 2.60 | 3.136 (2) | 117 | D |
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y, -z+1; (v) -x, -y, -z+1; (vi) -x, -y+1, -z; (vii) -x+1, -y, -z; (viii) x-1, y, z. |
Acknowledgements
Technical support (X-ray measurements at SCDRX) from Université Henry Poincaré, Nancy 1, is gratefully acknowledged.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Bendjeddou, L., Cherouana, A., Berrah, F. & Benali-Cherif, N. (2003). Acta Cryst. E59, o574–o576. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Böhm, H.-J. & Klebe, G. (1996). Angew. Chem. Int. Ed. Engl. 35, 2588–2614. Google Scholar
Cherouana, A., Bendjeddou, L. & Benali-Cherif, N. (2003). Acta Cryst. E59, o1790–o1792. Web of Science CSD CrossRef IUCr Journals Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. New York: Oxford University Press Inc. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Murray-Rust, P. & Glusker, J. P. (1984). J. Am. Chem. Soc. 106, 1018–1025. CrossRef CAS Web of Science Google Scholar
Nangia, A. & Desiraju, G. R. (1998). Acta Cryst. A54, 934–944. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Persistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org/ . Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Taylor, R. & Kennard, O. (1984). Acc. Chem. Res. 17, 320–326. CrossRef CAS Web of Science Google Scholar
Tintelnot, M. & Andrews, P. (1989). J. Comput. Aid. Mol. Des. 3, 67–84. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydrogen bonds play a crucial role in supramolecular organization (Jeffrey, 1997; Nangia & Desiraju, 1998). Knowledge of hydrogen-bond geometries (Taylor & Kennard, 1984; Murray-Rust & Glusker, 1984) and motif formation is vital in the modeling of protein-ligand interactions (Tintelnot & Andrews, 1989; Böhm & Klebe, 1996). The supramolecular networks become especially interesting when the cation and anion can participate in hydrogen-bonding. In this regard previous studies have been concerned with organic salts of carboxylic acids (Bendjeddou et al., 2003), Cherouana et al., 2003). The asymmetric unit of (I) (Fig. 1) contains two carboxyanilinium cations (A and B), two perchlorate anion and one water molecule. A proton transfer from the perchloric acid to atom N1 and N2 of m-carboxyalinine resulted in the formation of salts.
1- Supramolecular organization:
The structure is formed by double anionic and cationic chains that extend along the b axis, giving rise to layers parallel to the plane (b, c). Chains of water molecules are sandwiched between the anionic double chains (Fig2.).
1–1- Overview.
The supramolecular architecture is generated by the nineteen independent interactions of the Table 1. Three types of intermolecular interactions are present in the structure, including O—H···O, N—H···O and C—H···O hydrogen bonds. The presence of water molecule in the structure results in the presence of additional hydrogen bonds. The construction of graphs-set of the twenty hydrogen bonds in this compound has led to a first-level graph set noted: N1 = R22(8)R22(8) (Bernstein et al., 1995) (Table 1.).
1–2- The O—H···O hydrogen-bonded network
The carboxylic acid groups at the opposite end of the carboxyanilinium cations forms a centrosymmetric hydrogen-bonded dimers with its counterpart in a cation from an adjacent ribbon and are centered at (0 1/2 0) and (1/2 0 0) respectively for cation A and cation B (Fig. 3). These interactions lead to the graph-set motif R22(8), which is a characteristic feature found in most salts of 3- and 4-aminobenzoic acid (Cambridge Structural Database; Allen, 2002).
The water molecule, bridges the anionic perchlorate via the O—H···O hydrogen bonds. The centrosymmetric hydrogen-bonded rings formed by two water molecules and two Cl(1)O4- anions can be described by the graph-set R44(12) and R24(8). The aggregation of this two ring motifs results in an overall one-dimensional hydrogen-bonded chain structure along the [100] direction (Fig. 4).
1–3- The N—H···O hydrogen-bonded network
In the first cationic (A) entity, all ammonium H atoms are involved in hydrogen bonds with the perchlorate (Cl(2) O4-) anion and water molecule. Two of these interactions link the anions and cations in an alternating fashion into extended chains along the [100] direction, which can be described by the graph-set C22(4). The two other interactions are in a crosslink from an adjacent chain C22(4). The combination of these two chain motifs generates noncentrosymmetric fused rings which can be described by the graph-set motif R34(10).
In the second cationic (B) entitie, all ammonium H atoms are involved in hydrogen bonds, with the two different perchlorate ion, so forming an alternating noncentrosymmetric rings a long [100] direction which can be described by the graph-set R34(10). Only one H atom (H2C) is involved in bifurcated hydrogen bonds with O(3) and O(4) perchlorate atoms, to form a four-membered hydrogen bonded ring R21(4). The junction betwen this two different cations (A and B) entities are assured by the perchlorate (Cl(2) O4-) anion via N1—H1B···O6, N1—H1B···O8, N2—H2A···O6, N2—H2A···O7 hydrogen bonds, so generete R32(6) rings along [100] direction (Fig. 5)
1–4- The C—H···O hydrogen-bonded network:
The junction between the cationic entity is consolidated by five weak independent C—H···O hydrogen bonds via the perchlorate anions, forming an alternating of R46(22) and R56(30)centrosymmetric Rings a long b axis (Fig. 6).