metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ2-acetato-κ8O:O′-bis­­[(iso­quinoline-κN)copper(II)]

aDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 2 July 2009; accepted 2 July 2009; online 8 July 2009)

In the crystal structure of the title compound, [Cu2(CH3COO)4(C9H7N)2], the CuII cation is coordinated by four acetate anions and one isoquinoline mol­ecule in a distorted square-pyramidal geometry; the CuII cation is 0.1681 (6) Å from the basal coordination plane formed by the four O atoms. Each acetate anion bridges two CuII cations to form the centrosymmetric dinuclear complex. Within the dinuclear mol­ecule, the Cu⋯Cu separation is 2.6459 (4) Å. A parallel arrangement of isoquinoline ligands of adjacent complexes is observed in the crystal structure; the face-to-face distance of 3.610 (10) Å suggests there is no ππ stacking between isoquinoline ring systems.

Related literature

For general background on the nature of ππ stacking, see: Su & Xu (2004[Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223-229.]); Xu et al. (2007[Xu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622-m624.]). For related isoquinoline complexes, see: Clegg & Straughan (1989[Clegg, W. & Straughan, B. P. (1989). Acta Cryst. C45, 1992-1994.]); Ivanikova et al. (2006[Ivanikova, R., Boca, R., Dlhan, L., Fuess, H., Maslejova, A., Mrazova, V., Svoboda, I. & Titis, J. (2006). Polyhedron, 25, 3261-3268.]). For a related quinoline complex, see: Pan & Xu (2004[Pan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56-m58.]). For the metal atomic deviation from the basal coordination plane in square-pyramidal coordination geometry, see: Xie & Xu (2005[Xie, A.-L. & Xu, D.-J. (2005). J. Coord. Chem. 58, 225-230.]). For the Cu⋯Cu distance in a polymeric CuII complex, see: Li et al. (2007[Li, D.-X., Xu, D.-J. & Xu, Y.-Z. (2007). J. Coord. Chem. 60, 2687-2694.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C2H3O2)4(C9H7N)2]

  • Mr = 621.57

  • Monoclinic, P 21 /n

  • a = 12.2278 (3) Å

  • b = 8.1610 (2) Å

  • c = 13.5309 (4) Å

  • β = 103.827 (8)°

  • V = 1311.13 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.67 mm−1

  • T = 294 K

  • 0.28 × 0.26 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.635, Tmax = 0.720

  • 12480 measured reflections

  • 2997 independent reflections

  • 2638 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.074

  • S = 1.06

  • 2997 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Selected bond lengths (Å)

Cu—N1 2.1789 (15)
Cu—O1 1.9771 (13)
Cu—O2i 1.9728 (13)
Cu—O3 1.9777 (13)
Cu—O4i 1.9740 (13)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our ongoing investigation on the nature of π-π stacking (Su & Xu, 2004; Xu et al., 2007), the title complex incorporating isoquinoline ligand has recently been prepared in the laboratory and its crystal structure is reported here.

The molecular structure is shown in Fig. 1. The CuII cation is coordinated by four O atoms from four acetate anions in the basal plane, an isoquinoline molecule coordinates to the CuII cation in the apical position to complete the distorted square-pyramidal coordination geometry. The CuII cation is 0.1681 (6) Å deviated from the basal coordination plane, which is consistent with the situation found in complexes with square-pyramidal coordination geometry (Xie & Xu, 2005). The Cu—N bond in the apical direction is longer than Cu—O bonds in the basal plane by ca 0.2 Å, showing the typical Jahn-Teller distortion. Each acetate anion bridges two CuII cations to form the centro-symmetric dinuclear complex. Within the dinuclear molecule the Cu···Cu separation is 2.6459 (4) Å, similar to 2.642 Å found in a polymeric CuII complex bridged by thiourea (Li et al. 2007).

The parallel arrangement of isoquinoline ligands of adjacent complexes is observed in the crystal structure (Fig. 2). The face-to-face distance of 3.610 (10) Å is close to 3.573 (5) Å found in a quinoline complex (Pan & Xu, 2004) and suggests no π-π stacking between isoquinoline ring systems.

Related literature top

For general background on the nature of ππ stacking, see: Su & Xu (2004); Xu et al. (2007). For related isoquinoline complexes, see: Clegg & Straughan (1989); Ivanikova et al. (2006). For a related quinoline complex, see: Pan & Xu (2004). For the metal atomic deviation from the basal coordination plane in square-pyramidal coordination geometry, see: Xie & Xu (2005). For the Cu···Cu distance in a polymeric CuII complex, see: Li et al. (2007).

Experimental top

A water-ethanol solution (10 ml, 1:2) of isoquinoline (0.12 ml, 1 mmol) and copper acetate monohydrate (0.10 g, 0.5 mmol) was refluxed for 2.5 h. After cooling to room temperature the solution was filtered. The single crystals of the title compound were obtained from the filtrate after 3 d.

Refinement top

Methyl H atoms were equally disordered over two sites with C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C). Aromatic H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 40% probability displacement (arbitrary spheres for H atoms). The disordered methyl H atoms are not shown for clarify [symmetry code: (i) 1 - x, 1 - y, 1 - z].
[Figure 2] Fig. 2. The unit cell packing diagram showing the parallel arrangement of isoquinoline ligands.
Tetra-µ2-acetato-κ8O:O'-bis[(isoquinoline- κN)copper(II)] top
Crystal data top
[Cu2(C2H3O2)4(C9H7N)2]F(000) = 636
Mr = 621.57Dx = 1.574 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 10519 reflections
a = 12.2278 (3) Åθ = 3.0–25.5°
b = 8.1610 (2) ŵ = 1.67 mm1
c = 13.5309 (4) ÅT = 294 K
β = 103.827 (8)°Chunk, blue
V = 1311.13 (7) Å30.28 × 0.26 × 0.20 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2997 independent reflections
Radiation source: fine-focus sealed tube2638 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.0 pixels mm-1θmax = 27.4°, θmin = 3.0°
ω scansh = 1515
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1010
Tmin = 0.635, Tmax = 0.720l = 1717
12480 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.4143P]
where P = (Fo2 + 2Fc2)/3
2997 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Cu2(C2H3O2)4(C9H7N)2]V = 1311.13 (7) Å3
Mr = 621.57Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.2278 (3) ŵ = 1.67 mm1
b = 8.1610 (2) ÅT = 294 K
c = 13.5309 (4) Å0.28 × 0.26 × 0.20 mm
β = 103.827 (8)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2997 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2638 reflections with I > 2σ(I)
Tmin = 0.635, Tmax = 0.720Rint = 0.024
12480 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.06Δρmax = 0.27 e Å3
2997 reflectionsΔρmin = 0.40 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu0.411018 (16)0.55776 (2)0.528203 (14)0.03074 (9)
N10.26051 (12)0.65641 (18)0.56603 (11)0.0360 (3)
O10.32898 (12)0.45444 (18)0.39965 (11)0.0457 (3)
O20.47861 (11)0.35876 (18)0.35131 (10)0.0453 (3)
O30.43805 (12)0.75437 (16)0.45194 (11)0.0451 (3)
O40.58673 (12)0.65621 (17)0.40330 (11)0.0457 (3)
C10.16249 (15)0.6461 (2)0.49949 (14)0.0378 (4)
H10.15930.58830.43960.045*
C20.04146 (17)0.7044 (3)0.43993 (16)0.0496 (5)
H20.04500.64830.37940.060*
C30.13598 (18)0.7741 (3)0.4580 (2)0.0576 (6)
H30.20400.76530.40960.069*
C40.13180 (19)0.8585 (3)0.5482 (2)0.0595 (6)
H40.19720.90520.55930.071*
C50.03322 (19)0.8738 (3)0.62062 (18)0.0547 (5)
H50.03180.93120.68030.066*
C60.17226 (17)0.8114 (3)0.67579 (15)0.0476 (5)
H60.17910.86680.73700.057*
C70.26360 (16)0.7388 (3)0.65421 (14)0.0428 (4)
H70.33200.74570.70220.051*
C80.06221 (15)0.7172 (2)0.51336 (14)0.0364 (4)
C90.06649 (16)0.8026 (2)0.60497 (14)0.0395 (4)
C100.37462 (16)0.3780 (2)0.34010 (13)0.0365 (4)
C110.2983 (2)0.3021 (3)0.24755 (17)0.0588 (6)
H11A0.34280.24730.20810.088*0.50
H11B0.25400.38610.20710.088*0.50
H11C0.24930.22440.26850.088*0.50
H11D0.22130.32450.24770.088*0.50
H11E0.31010.18570.24870.088*0.50
H11F0.31480.34740.18730.088*0.50
C120.51710 (15)0.7661 (2)0.40790 (13)0.0361 (4)
C130.5292 (2)0.9275 (3)0.3568 (2)0.0589 (6)
H13A0.47101.00120.36560.088*0.50
H13B0.52260.90960.28550.088*0.50
H13C0.60150.97420.38690.088*0.50
H13D0.59240.92210.32640.088*0.50
H13E0.54081.01370.40650.088*0.50
H13F0.46190.94910.30510.088*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.02788 (12)0.03427 (13)0.03091 (13)0.00155 (8)0.00869 (8)0.00023 (8)
N10.0332 (7)0.0399 (8)0.0368 (7)0.0025 (6)0.0117 (6)0.0014 (6)
O10.0362 (7)0.0574 (9)0.0413 (7)0.0006 (6)0.0050 (6)0.0134 (6)
O20.0393 (7)0.0568 (9)0.0388 (7)0.0013 (6)0.0074 (5)0.0118 (6)
O30.0476 (8)0.0401 (7)0.0518 (8)0.0056 (6)0.0203 (6)0.0090 (6)
O40.0450 (7)0.0423 (7)0.0554 (8)0.0042 (6)0.0231 (6)0.0123 (6)
C10.0375 (9)0.0428 (10)0.0346 (9)0.0026 (8)0.0114 (7)0.0010 (7)
C20.0396 (10)0.0552 (12)0.0504 (11)0.0017 (9)0.0034 (9)0.0025 (9)
C30.0337 (10)0.0629 (14)0.0717 (15)0.0037 (10)0.0040 (10)0.0051 (12)
C40.0389 (11)0.0697 (15)0.0745 (15)0.0144 (11)0.0224 (11)0.0079 (12)
C50.0492 (12)0.0660 (14)0.0549 (12)0.0133 (11)0.0242 (10)0.0007 (11)
C60.0470 (11)0.0602 (12)0.0369 (9)0.0062 (10)0.0124 (8)0.0086 (9)
C70.0355 (9)0.0547 (11)0.0377 (9)0.0015 (9)0.0076 (7)0.0045 (8)
C80.0336 (9)0.0371 (9)0.0396 (9)0.0004 (7)0.0112 (7)0.0056 (7)
C90.0376 (9)0.0432 (10)0.0408 (9)0.0048 (8)0.0152 (8)0.0041 (8)
C100.0397 (9)0.0368 (9)0.0304 (8)0.0032 (8)0.0032 (7)0.0001 (7)
C110.0534 (13)0.0723 (15)0.0437 (11)0.0073 (11)0.0021 (9)0.0175 (11)
C120.0378 (9)0.0343 (9)0.0349 (8)0.0040 (8)0.0059 (7)0.0025 (7)
C130.0721 (16)0.0412 (11)0.0687 (15)0.0020 (10)0.0271 (13)0.0150 (10)
Geometric parameters (Å, º) top
Cu—N12.1789 (15)C4—H40.9300
Cu—O11.9771 (13)C5—C91.412 (3)
Cu—O2i1.9728 (13)C5—H50.9300
Cu—O31.9777 (13)C6—C71.356 (3)
Cu—O4i1.9740 (13)C6—C91.416 (3)
Cu—Cui2.6459 (4)C6—H60.9300
N1—C11.318 (2)C7—H70.9300
N1—C71.362 (2)C8—C91.412 (3)
O1—C101.251 (2)C10—C111.505 (3)
O2—C101.254 (2)C11—H11A0.9600
O2—Cui1.9728 (13)C11—H11B0.9600
O3—C121.255 (2)C11—H11C0.9600
O4—C121.249 (2)C11—H11D0.9600
O4—Cui1.9740 (13)C11—H11E0.9600
C1—C81.409 (3)C11—H11F0.9600
C1—H10.9300C12—C131.510 (3)
C2—C31.362 (3)C13—H13A0.9600
C2—C81.415 (3)C13—H13B0.9600
C2—H20.9300C13—H13C0.9600
C3—C41.391 (3)C13—H13D0.9600
C3—H30.9300C13—H13E0.9600
C4—C51.366 (3)C13—H13F0.9600
O2i—Cu—O4i89.28 (6)O1—C10—O2125.47 (17)
O2i—Cu—O1167.80 (6)O1—C10—C11117.25 (18)
O4i—Cu—O189.03 (6)O2—C10—C11117.28 (18)
O2i—Cu—O389.10 (6)C10—C11—H11A109.5
O4i—Cu—O3167.77 (6)C10—C11—H11B109.5
O1—Cu—O390.00 (6)H11A—C11—H11B109.5
O2i—Cu—N197.34 (6)C10—C11—H11C109.5
O4i—Cu—N197.72 (6)H11A—C11—H11C109.5
O1—Cu—N194.86 (6)H11B—C11—H11C109.5
O3—Cu—N194.51 (6)C10—C11—H11D109.5
O2i—Cu—Cui85.07 (4)H11A—C11—H11D141.1
O4i—Cu—Cui84.27 (4)H11B—C11—H11D56.3
O1—Cu—Cui82.74 (4)H11C—C11—H11D56.3
O3—Cu—Cui83.51 (4)C10—C11—H11E109.5
N1—Cu—Cui176.88 (4)H11A—C11—H11E56.3
C1—N1—C7117.39 (16)H11B—C11—H11E141.1
C1—N1—Cu119.81 (12)H11C—C11—H11E56.3
C7—N1—Cu122.68 (12)H11D—C11—H11E109.5
C10—O1—Cu124.66 (12)C10—C11—H11F109.5
C10—O2—Cui122.03 (12)H11A—C11—H11F56.3
C12—O3—Cu123.63 (12)H11B—C11—H11F56.3
C12—O4—Cui123.05 (12)H11C—C11—H11F141.1
N1—C1—C8124.11 (17)H11D—C11—H11F109.5
N1—C1—H1117.9H11E—C11—H11F109.5
C8—C1—H1117.9O4—C12—O3125.49 (17)
C3—C2—C8119.9 (2)O4—C12—C13117.46 (18)
C3—C2—H2120.0O3—C12—C13117.04 (18)
C8—C2—H2120.0C12—C13—H13A109.5
C2—C3—C4120.6 (2)C12—C13—H13B109.5
C2—C3—H3119.7H13A—C13—H13B109.5
C4—C3—H3119.7C12—C13—H13C109.5
C5—C4—C3121.1 (2)H13A—C13—H13C109.5
C5—C4—H4119.5H13B—C13—H13C109.5
C3—C4—H4119.5C12—C13—H13D109.5
C4—C5—C9120.0 (2)H13A—C13—H13D141.1
C4—C5—H5120.0H13B—C13—H13D56.3
C9—C5—H5120.0H13C—C13—H13D56.3
C7—C6—C9119.90 (18)C12—C13—H13E109.5
C7—C6—H6120.1H13A—C13—H13E56.3
C9—C6—H6120.1H13B—C13—H13E141.1
C6—C7—N1123.52 (17)H13C—C13—H13E56.3
C6—C7—H7118.2H13D—C13—H13E109.5
N1—C7—H7118.2C12—C13—H13F109.5
C1—C8—C9117.99 (16)H13A—C13—H13F56.3
C1—C8—C2122.54 (17)H13B—C13—H13F56.3
C9—C8—C2119.46 (17)H13C—C13—H13F141.1
C8—C9—C5118.87 (18)H13D—C13—H13F109.5
C8—C9—C6117.09 (17)H13E—C13—H13F109.5
C5—C9—C6124.04 (19)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C2H3O2)4(C9H7N)2]
Mr621.57
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)12.2278 (3), 8.1610 (2), 13.5309 (4)
β (°) 103.827 (8)
V3)1311.13 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.67
Crystal size (mm)0.28 × 0.26 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.635, 0.720
No. of measured, independent and
observed [I > 2σ(I)] reflections
12480, 2997, 2638
Rint0.024
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.074, 1.06
No. of reflections2997
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.40

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Cu—N12.1789 (15)Cu—O31.9777 (13)
Cu—O11.9771 (13)Cu—O4i1.9740 (13)
Cu—O2i1.9728 (13)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the ZIJIN project of Zhejiang University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationClegg, W. & Straughan, B. P. (1989). Acta Cryst. C45, 1992–1994.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIvanikova, R., Boca, R., Dlhan, L., Fuess, H., Maslejova, A., Mrazova, V., Svoboda, I. & Titis, J. (2006). Polyhedron, 25, 3261–3268.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, D.-X., Xu, D.-J. & Xu, Y.-Z. (2007). J. Coord. Chem. 60, 2687–2694.  Web of Science CSD CrossRef CAS Google Scholar
First citationPan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56–m58.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223–229.  Web of Science CSD CrossRef CAS Google Scholar
First citationXie, A.-L. & Xu, D.-J. (2005). J. Coord. Chem. 58, 225–230.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622–m624.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds