metal-organic compounds
Tetra-μ2-acetato-κ8O:O′-bis[(isoquinoline-κN)copper(II)]
aDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn
In the 2(CH3COO)4(C9H7N)2], the CuII cation is coordinated by four acetate anions and one isoquinoline molecule in a distorted square-pyramidal geometry; the CuII cation is 0.1681 (6) Å from the basal coordination plane formed by the four O atoms. Each acetate anion bridges two CuII cations to form the centrosymmetric dinuclear complex. Within the dinuclear molecule, the Cu⋯Cu separation is 2.6459 (4) Å. A parallel arrangement of isoquinoline ligands of adjacent complexes is observed in the the face-to-face distance of 3.610 (10) Å suggests there is no π–π stacking between isoquinoline ring systems.
of the title compound, [CuRelated literature
For general background on the nature of π–π stacking, see: Su & Xu (2004); Xu et al. (2007). For related isoquinoline complexes, see: Clegg & Straughan (1989); Ivanikova et al. (2006). For a related quinoline complex, see: Pan & Xu (2004). For the metal atomic deviation from the basal coordination plane in square-pyramidal coordination geometry, see: Xie & Xu (2005). For the Cu⋯Cu distance in a polymeric CuII complex, see: Li et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809025732/bq2151sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809025732/bq2151Isup2.hkl
A water-ethanol solution (10 ml, 1:2) of isoquinoline (0.12 ml, 1 mmol) and copper acetate monohydrate (0.10 g, 0.5 mmol) was refluxed for 2.5 h. After cooling to room temperature the solution was filtered. The single crystals of the title compound were obtained from the filtrate after 3 d.
Methyl H atoms were equally disordered over two sites with C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C). Aromatic H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode with Uiso(H) = 1.2Ueq(C).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).[Cu2(C2H3O2)4(C9H7N)2] | F(000) = 636 |
Mr = 621.57 | Dx = 1.574 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 10519 reflections |
a = 12.2278 (3) Å | θ = 3.0–25.5° |
b = 8.1610 (2) Å | µ = 1.67 mm−1 |
c = 13.5309 (4) Å | T = 294 K |
β = 103.827 (8)° | Chunk, blue |
V = 1311.13 (7) Å3 | 0.28 × 0.26 × 0.20 mm |
Z = 2 |
Rigaku R-AXIS RAPID IP diffractometer | 2997 independent reflections |
Radiation source: fine-focus sealed tube | 2638 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
Detector resolution: 10.0 pixels mm-1 | θmax = 27.4°, θmin = 3.0° |
ω scans | h = −15→15 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −10→10 |
Tmin = 0.635, Tmax = 0.720 | l = −17→17 |
12480 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.074 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0405P)2 + 0.4143P] where P = (Fo2 + 2Fc2)/3 |
2997 reflections | (Δ/σ)max = 0.001 |
172 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
[Cu2(C2H3O2)4(C9H7N)2] | V = 1311.13 (7) Å3 |
Mr = 621.57 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 12.2278 (3) Å | µ = 1.67 mm−1 |
b = 8.1610 (2) Å | T = 294 K |
c = 13.5309 (4) Å | 0.28 × 0.26 × 0.20 mm |
β = 103.827 (8)° |
Rigaku R-AXIS RAPID IP diffractometer | 2997 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2638 reflections with I > 2σ(I) |
Tmin = 0.635, Tmax = 0.720 | Rint = 0.024 |
12480 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.074 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.27 e Å−3 |
2997 reflections | Δρmin = −0.40 e Å−3 |
172 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu | 0.411018 (16) | 0.55776 (2) | 0.528203 (14) | 0.03074 (9) | |
N1 | 0.26051 (12) | 0.65641 (18) | 0.56603 (11) | 0.0360 (3) | |
O1 | 0.32898 (12) | 0.45444 (18) | 0.39965 (11) | 0.0457 (3) | |
O2 | 0.47861 (11) | 0.35876 (18) | 0.35131 (10) | 0.0453 (3) | |
O3 | 0.43805 (12) | 0.75437 (16) | 0.45194 (11) | 0.0451 (3) | |
O4 | 0.58673 (12) | 0.65621 (17) | 0.40330 (11) | 0.0457 (3) | |
C1 | 0.16249 (15) | 0.6461 (2) | 0.49949 (14) | 0.0378 (4) | |
H1 | 0.1593 | 0.5883 | 0.4396 | 0.045* | |
C2 | −0.04146 (17) | 0.7044 (3) | 0.43993 (16) | 0.0496 (5) | |
H2 | −0.0450 | 0.6483 | 0.3794 | 0.060* | |
C3 | −0.13598 (18) | 0.7741 (3) | 0.4580 (2) | 0.0576 (6) | |
H3 | −0.2040 | 0.7653 | 0.4096 | 0.069* | |
C4 | −0.13180 (19) | 0.8585 (3) | 0.5482 (2) | 0.0595 (6) | |
H4 | −0.1972 | 0.9052 | 0.5593 | 0.071* | |
C5 | −0.03322 (19) | 0.8738 (3) | 0.62062 (18) | 0.0547 (5) | |
H5 | −0.0318 | 0.9312 | 0.6803 | 0.066* | |
C6 | 0.17226 (17) | 0.8114 (3) | 0.67579 (15) | 0.0476 (5) | |
H6 | 0.1791 | 0.8668 | 0.7370 | 0.057* | |
C7 | 0.26360 (16) | 0.7388 (3) | 0.65421 (14) | 0.0428 (4) | |
H7 | 0.3320 | 0.7457 | 0.7022 | 0.051* | |
C8 | 0.06221 (15) | 0.7172 (2) | 0.51336 (14) | 0.0364 (4) | |
C9 | 0.06649 (16) | 0.8026 (2) | 0.60497 (14) | 0.0395 (4) | |
C10 | 0.37462 (16) | 0.3780 (2) | 0.34010 (13) | 0.0365 (4) | |
C11 | 0.2983 (2) | 0.3021 (3) | 0.24755 (17) | 0.0588 (6) | |
H11A | 0.3428 | 0.2473 | 0.2081 | 0.088* | 0.50 |
H11B | 0.2540 | 0.3861 | 0.2071 | 0.088* | 0.50 |
H11C | 0.2493 | 0.2244 | 0.2685 | 0.088* | 0.50 |
H11D | 0.2213 | 0.3245 | 0.2477 | 0.088* | 0.50 |
H11E | 0.3101 | 0.1857 | 0.2487 | 0.088* | 0.50 |
H11F | 0.3148 | 0.3474 | 0.1873 | 0.088* | 0.50 |
C12 | 0.51710 (15) | 0.7661 (2) | 0.40790 (13) | 0.0361 (4) | |
C13 | 0.5292 (2) | 0.9275 (3) | 0.3568 (2) | 0.0589 (6) | |
H13A | 0.4710 | 1.0012 | 0.3656 | 0.088* | 0.50 |
H13B | 0.5226 | 0.9096 | 0.2855 | 0.088* | 0.50 |
H13C | 0.6015 | 0.9742 | 0.3869 | 0.088* | 0.50 |
H13D | 0.5924 | 0.9221 | 0.3264 | 0.088* | 0.50 |
H13E | 0.5408 | 1.0137 | 0.4065 | 0.088* | 0.50 |
H13F | 0.4619 | 0.9491 | 0.3051 | 0.088* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.02788 (12) | 0.03427 (13) | 0.03091 (13) | 0.00155 (8) | 0.00869 (8) | −0.00023 (8) |
N1 | 0.0332 (7) | 0.0399 (8) | 0.0368 (7) | 0.0025 (6) | 0.0117 (6) | 0.0014 (6) |
O1 | 0.0362 (7) | 0.0574 (9) | 0.0413 (7) | −0.0006 (6) | 0.0050 (6) | −0.0134 (6) |
O2 | 0.0393 (7) | 0.0568 (9) | 0.0388 (7) | 0.0013 (6) | 0.0074 (5) | −0.0118 (6) |
O3 | 0.0476 (8) | 0.0401 (7) | 0.0518 (8) | 0.0056 (6) | 0.0203 (6) | 0.0090 (6) |
O4 | 0.0450 (7) | 0.0423 (7) | 0.0554 (8) | 0.0042 (6) | 0.0231 (6) | 0.0123 (6) |
C1 | 0.0375 (9) | 0.0428 (10) | 0.0346 (9) | 0.0026 (8) | 0.0114 (7) | −0.0010 (7) |
C2 | 0.0396 (10) | 0.0552 (12) | 0.0504 (11) | 0.0017 (9) | 0.0034 (9) | −0.0025 (9) |
C3 | 0.0337 (10) | 0.0629 (14) | 0.0717 (15) | 0.0037 (10) | 0.0040 (10) | 0.0051 (12) |
C4 | 0.0389 (11) | 0.0697 (15) | 0.0745 (15) | 0.0144 (11) | 0.0224 (11) | 0.0079 (12) |
C5 | 0.0492 (12) | 0.0660 (14) | 0.0549 (12) | 0.0133 (11) | 0.0242 (10) | −0.0007 (11) |
C6 | 0.0470 (11) | 0.0602 (12) | 0.0369 (9) | 0.0062 (10) | 0.0124 (8) | −0.0086 (9) |
C7 | 0.0355 (9) | 0.0547 (11) | 0.0377 (9) | 0.0015 (9) | 0.0076 (7) | −0.0045 (8) |
C8 | 0.0336 (9) | 0.0371 (9) | 0.0396 (9) | 0.0004 (7) | 0.0112 (7) | 0.0056 (7) |
C9 | 0.0376 (9) | 0.0432 (10) | 0.0408 (9) | 0.0048 (8) | 0.0152 (8) | 0.0041 (8) |
C10 | 0.0397 (9) | 0.0368 (9) | 0.0304 (8) | −0.0032 (8) | 0.0032 (7) | 0.0001 (7) |
C11 | 0.0534 (13) | 0.0723 (15) | 0.0437 (11) | −0.0073 (11) | −0.0021 (9) | −0.0175 (11) |
C12 | 0.0378 (9) | 0.0343 (9) | 0.0349 (8) | −0.0040 (8) | 0.0059 (7) | 0.0025 (7) |
C13 | 0.0721 (16) | 0.0412 (11) | 0.0687 (15) | −0.0020 (10) | 0.0271 (13) | 0.0150 (10) |
Cu—N1 | 2.1789 (15) | C4—H4 | 0.9300 |
Cu—O1 | 1.9771 (13) | C5—C9 | 1.412 (3) |
Cu—O2i | 1.9728 (13) | C5—H5 | 0.9300 |
Cu—O3 | 1.9777 (13) | C6—C7 | 1.356 (3) |
Cu—O4i | 1.9740 (13) | C6—C9 | 1.416 (3) |
Cu—Cui | 2.6459 (4) | C6—H6 | 0.9300 |
N1—C1 | 1.318 (2) | C7—H7 | 0.9300 |
N1—C7 | 1.362 (2) | C8—C9 | 1.412 (3) |
O1—C10 | 1.251 (2) | C10—C11 | 1.505 (3) |
O2—C10 | 1.254 (2) | C11—H11A | 0.9600 |
O2—Cui | 1.9728 (13) | C11—H11B | 0.9600 |
O3—C12 | 1.255 (2) | C11—H11C | 0.9600 |
O4—C12 | 1.249 (2) | C11—H11D | 0.9600 |
O4—Cui | 1.9740 (13) | C11—H11E | 0.9600 |
C1—C8 | 1.409 (3) | C11—H11F | 0.9600 |
C1—H1 | 0.9300 | C12—C13 | 1.510 (3) |
C2—C3 | 1.362 (3) | C13—H13A | 0.9600 |
C2—C8 | 1.415 (3) | C13—H13B | 0.9600 |
C2—H2 | 0.9300 | C13—H13C | 0.9600 |
C3—C4 | 1.391 (3) | C13—H13D | 0.9600 |
C3—H3 | 0.9300 | C13—H13E | 0.9600 |
C4—C5 | 1.366 (3) | C13—H13F | 0.9600 |
O2i—Cu—O4i | 89.28 (6) | O1—C10—O2 | 125.47 (17) |
O2i—Cu—O1 | 167.80 (6) | O1—C10—C11 | 117.25 (18) |
O4i—Cu—O1 | 89.03 (6) | O2—C10—C11 | 117.28 (18) |
O2i—Cu—O3 | 89.10 (6) | C10—C11—H11A | 109.5 |
O4i—Cu—O3 | 167.77 (6) | C10—C11—H11B | 109.5 |
O1—Cu—O3 | 90.00 (6) | H11A—C11—H11B | 109.5 |
O2i—Cu—N1 | 97.34 (6) | C10—C11—H11C | 109.5 |
O4i—Cu—N1 | 97.72 (6) | H11A—C11—H11C | 109.5 |
O1—Cu—N1 | 94.86 (6) | H11B—C11—H11C | 109.5 |
O3—Cu—N1 | 94.51 (6) | C10—C11—H11D | 109.5 |
O2i—Cu—Cui | 85.07 (4) | H11A—C11—H11D | 141.1 |
O4i—Cu—Cui | 84.27 (4) | H11B—C11—H11D | 56.3 |
O1—Cu—Cui | 82.74 (4) | H11C—C11—H11D | 56.3 |
O3—Cu—Cui | 83.51 (4) | C10—C11—H11E | 109.5 |
N1—Cu—Cui | 176.88 (4) | H11A—C11—H11E | 56.3 |
C1—N1—C7 | 117.39 (16) | H11B—C11—H11E | 141.1 |
C1—N1—Cu | 119.81 (12) | H11C—C11—H11E | 56.3 |
C7—N1—Cu | 122.68 (12) | H11D—C11—H11E | 109.5 |
C10—O1—Cu | 124.66 (12) | C10—C11—H11F | 109.5 |
C10—O2—Cui | 122.03 (12) | H11A—C11—H11F | 56.3 |
C12—O3—Cu | 123.63 (12) | H11B—C11—H11F | 56.3 |
C12—O4—Cui | 123.05 (12) | H11C—C11—H11F | 141.1 |
N1—C1—C8 | 124.11 (17) | H11D—C11—H11F | 109.5 |
N1—C1—H1 | 117.9 | H11E—C11—H11F | 109.5 |
C8—C1—H1 | 117.9 | O4—C12—O3 | 125.49 (17) |
C3—C2—C8 | 119.9 (2) | O4—C12—C13 | 117.46 (18) |
C3—C2—H2 | 120.0 | O3—C12—C13 | 117.04 (18) |
C8—C2—H2 | 120.0 | C12—C13—H13A | 109.5 |
C2—C3—C4 | 120.6 (2) | C12—C13—H13B | 109.5 |
C2—C3—H3 | 119.7 | H13A—C13—H13B | 109.5 |
C4—C3—H3 | 119.7 | C12—C13—H13C | 109.5 |
C5—C4—C3 | 121.1 (2) | H13A—C13—H13C | 109.5 |
C5—C4—H4 | 119.5 | H13B—C13—H13C | 109.5 |
C3—C4—H4 | 119.5 | C12—C13—H13D | 109.5 |
C4—C5—C9 | 120.0 (2) | H13A—C13—H13D | 141.1 |
C4—C5—H5 | 120.0 | H13B—C13—H13D | 56.3 |
C9—C5—H5 | 120.0 | H13C—C13—H13D | 56.3 |
C7—C6—C9 | 119.90 (18) | C12—C13—H13E | 109.5 |
C7—C6—H6 | 120.1 | H13A—C13—H13E | 56.3 |
C9—C6—H6 | 120.1 | H13B—C13—H13E | 141.1 |
C6—C7—N1 | 123.52 (17) | H13C—C13—H13E | 56.3 |
C6—C7—H7 | 118.2 | H13D—C13—H13E | 109.5 |
N1—C7—H7 | 118.2 | C12—C13—H13F | 109.5 |
C1—C8—C9 | 117.99 (16) | H13A—C13—H13F | 56.3 |
C1—C8—C2 | 122.54 (17) | H13B—C13—H13F | 56.3 |
C9—C8—C2 | 119.46 (17) | H13C—C13—H13F | 141.1 |
C8—C9—C5 | 118.87 (18) | H13D—C13—H13F | 109.5 |
C8—C9—C6 | 117.09 (17) | H13E—C13—H13F | 109.5 |
C5—C9—C6 | 124.04 (19) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C2H3O2)4(C9H7N)2] |
Mr | 621.57 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 294 |
a, b, c (Å) | 12.2278 (3), 8.1610 (2), 13.5309 (4) |
β (°) | 103.827 (8) |
V (Å3) | 1311.13 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.67 |
Crystal size (mm) | 0.28 × 0.26 × 0.20 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID IP diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.635, 0.720 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12480, 2997, 2638 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.074, 1.06 |
No. of reflections | 2997 |
No. of parameters | 172 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.27, −0.40 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Cu—N1 | 2.1789 (15) | Cu—O3 | 1.9777 (13) |
Cu—O1 | 1.9771 (13) | Cu—O4i | 1.9740 (13) |
Cu—O2i | 1.9728 (13) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
This work was supported by the ZIJIN project of Zhejiang University, China.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Clegg, W. & Straughan, B. P. (1989). Acta Cryst. C45, 1992–1994. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Ivanikova, R., Boca, R., Dlhan, L., Fuess, H., Maslejova, A., Mrazova, V., Svoboda, I. & Titis, J. (2006). Polyhedron, 25, 3261–3268. Web of Science CSD CrossRef CAS Google Scholar
Li, D.-X., Xu, D.-J. & Xu, Y.-Z. (2007). J. Coord. Chem. 60, 2687–2694. Web of Science CSD CrossRef CAS Google Scholar
Pan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56–m58. CSD CrossRef IUCr Journals Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223–229. Web of Science CSD CrossRef CAS Google Scholar
Xie, A.-L. & Xu, D.-J. (2005). J. Coord. Chem. 58, 225–230. Web of Science CSD CrossRef CAS Google Scholar
Xu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622–m624. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As part of our ongoing investigation on the nature of π-π stacking (Su & Xu, 2004; Xu et al., 2007), the title complex incorporating isoquinoline ligand has recently been prepared in the laboratory and its crystal structure is reported here.
The molecular structure is shown in Fig. 1. The CuII cation is coordinated by four O atoms from four acetate anions in the basal plane, an isoquinoline molecule coordinates to the CuII cation in the apical position to complete the distorted square-pyramidal coordination geometry. The CuII cation is 0.1681 (6) Å deviated from the basal coordination plane, which is consistent with the situation found in complexes with square-pyramidal coordination geometry (Xie & Xu, 2005). The Cu—N bond in the apical direction is longer than Cu—O bonds in the basal plane by ca 0.2 Å, showing the typical Jahn-Teller distortion. Each acetate anion bridges two CuII cations to form the centro-symmetric dinuclear complex. Within the dinuclear molecule the Cu···Cu separation is 2.6459 (4) Å, similar to 2.642 Å found in a polymeric CuII complex bridged by thiourea (Li et al. 2007).
The parallel arrangement of isoquinoline ligands of adjacent complexes is observed in the crystal structure (Fig. 2). The face-to-face distance of 3.610 (10) Å is close to 3.573 (5) Å found in a quinoline complex (Pan & Xu, 2004) and suggests no π-π stacking between isoquinoline ring systems.