inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages i61-i62

Two-dimensional dysprosium(III) triiodate(V) dihydrate, Dy(IO3)3(H2O)·H2O

aCollege of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China, and bDepartment of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: wxchai_cm@yahoo.com.cn

(Received 1 July 2009; accepted 10 July 2009; online 15 July 2009)

During our research into novel nonlinear optical materials using 1,10-phenanthroline as an appending ligand on lanthanide iodates, crystals of an infinite layered DyIII iodate compound, Dy(IO3)3(H2O)·H2O, were obtained under hydro­thermal conditions. The DyIII cation has a dicapped trigonal prismatic coordination environment consisting of one water O atom and seven other O atoms from seven iodate anions. These iodate anions bridge the DyIII cations into a two-dimensional structure. Through O—H⋯O hydrogen bonds, all of these layers stack along [111], giving a supra­molecular channel, with the solvent water mol­ecules filling the voids.

Related literature

For related materials with non-linear optical propertie, see: Rosenzweig & Morosin (1966[Rosenzweig, A. & Morosin, B. (1966). Acta Cryst. 20, 758-761.]); Liminga et al. (1977[Liminga, R., Abrahams, S. C. & Bernstein, J. L. (1977). J. Chem. Phys. 67, 1015-1023.]); Ok & Halasyamani (2005[Ok, K. M. & Halasyamani, P. S. (2005). Inorg. Chem. 44, 9353-9359.]). The method of preparation was based on HIO3, which is different to the previous method of obtaining periodates (Douglas et al., 2004[Douglas, P., Hector, A. L., Levason, W., Light, M. E., Matthews, M. L. & Webster, M. (2004). Z. Anorg. Allg. Chem. 630, 479-483.]; Assefa et al., 2006[Assefa, Z., Ling, J., Haire, R. G., Albrecht-Schmitt, T. E. & Sykora, R. E. (2006). J. Solid State Chem. 179, 3653-3663.]). For noncentrosymmetric inorganic–organic framework structures synthesized from organic ligands, see: Sun et al. (2009[Sun, Y.-G., Guo, M., Xiong, G., Jiang, B. & Wang, L. (2009). Acta Cryst. E65, i48.]). For related structrues, see: Sun et al. (2009[Sun, Y.-G., Guo, M., Xiong, G., Jiang, B. & Wang, L. (2009). Acta Cryst. E65, i48.]); Assefa et al. (2006[Assefa, Z., Ling, J., Haire, R. G., Albrecht-Schmitt, T. E. & Sykora, R. E. (2006). J. Solid State Chem. 179, 3653-3663.]); Douglas et al. (2004[Douglas, P., Hector, A. L., Levason, W., Light, M. E., Matthews, M. L. & Webster, M. (2004). Z. Anorg. Allg. Chem. 630, 479-483.]); Ok & Halasyamani (2005[Ok, K. M. & Halasyamani, P. S. (2005). Inorg. Chem. 44, 9353-9359.]); Chen et al. (2005[Chen, X. A., Xue, H. P., Chang, X. N., Zang, H. G. & Xiao, W. Q. (2005). J. Alloys Compd. 398, 173-177.]).

Experimental

Crystal data
  • Dy(IO3)3H2O·H2O

  • Mr = 723.23

  • Triclinic, [P \overline 1]

  • a = 7.15990 (10) Å

  • b = 7.4292 (1) Å

  • c = 10.64430 (10) Å

  • α = 95.161 (12)°

  • β = 104.858 (7)°

  • γ = 110.081 (8)°

  • V = 504.00 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 16.65 mm−1

  • T = 293 K

  • 0.16 × 0.12 × 0.06 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.136, Tmax = 0.435 (expected range = 0.115–0.368)

  • 3819 measured reflections

  • 2260 independent reflections

  • 2067 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.109

  • S = 1.06

  • 2260 reflections

  • 141 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.79 e Å−3

  • Δρmin = −3.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10A⋯O3i 0.80 2.29 2.873 (10) 131
O10—H10B⋯O9i 0.80 2.33 2.753 (11) 114
O11—H11A⋯O8ii 0.80 2.22 2.954 (11) 153
O11—H11B⋯O7iii 0.80 2.26 2.946 (11) 145
Symmetry codes: (i) x, y-1, z; (ii) x, y-1, z+1; (iii) -x, -y-1, -z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]; van der Sluis & Spek, 1990[Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194-201.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the 1970s, metal iodates have been extensively studied by Bell Laboratories not only for their nonlinear optical (NLO) properties but also for ferroelectric, piezoelectric and pyroelectric properties (Rosenzweig & Morosin, 1966; Liminga et al., 1977). In attempts to prepare noncentrosymmetric structures of lanthanide iodates, about six anhydrous structure types have been reported, in addition to numerous hydrated structures ranging from hemihydrates to pentahydrates. (Assefa et al., 2006). After comparing these structure types, herein, we find that the hydrated structures favor of adopting centrosymmetric structures. Then organic ligands are come into our view because they could form noncentrosymmetric inorganic–organic framework structures with metal ion. (Sun et al., 2009). Here, we firstly report a infinite layered DyIII iodate dihydrate synthesized from the hydrothermal reaction of Dy2O3, HIO3 and 1,10-phenanthroline.

In the title compound, the DyIII cation has dicapped trigonal prismatic coordination sphere. The coordination enciroments of the rare earth DyIII cation consist of eight O atoms derived from seven iodate anions and one water molecule (see Fig. 1). And these seven iodates are classed two types, one is three 3-connected iodates (of I2) through three O atoms, and the other is four iodates 2-connected (of I1 or I3) through two O atoms. Then these iodate anions bridge Dy atoms into two dimensional structure. And between the adjacent layers, there are two types of hydrogen bonds, one is O10—H10A···O3 bond, the other is O10—H10B···O9 bond. Then through these hydrogen bonds, all of these layers stacking along [111] axis to give out of a supramolecular channel. And the solvent water molecules fill in the channels, and stick on the channel with two hydrogen bonds of O11—H11A···O8 and O11—H11B···O7. (see Fig. 2) The hydrogen bonding data of lengths and angles are in the range of ordinary examples and have been examined by the PLATON program (Spek, 2009; van der Sluis & Spek, 1990).

Related literature top

For related NLO materials, see: Rosenzweig & Morosin (1966); Liminga et al. (1977); Ok & Halasyamani (2005). The method of preparation was based on HIO3, which is different to the previous method of obtaining periodates (Douglas et al., 2004; Assefa et al., 2006). For noncentrosymmetric inorganic–organic framework structures synthesized from organic ligands, see: Sun et al. (2009). For related structrues, see: Sun et al. (2009); Assefa et al. (2006); Douglas et al. (2004); Ok & Halasyamani (2005); Chen et al. (2005).

Experimental top

All chemicals were obtained from commercial sources and were used as received. The title compound was handily synthesized by a hydrothermal reaction from iodic acid. To a 25 ml stainless steal Teflon-lined reaction vessel, Dy2O3 (0.2 mmol, 75 mg), HIO3 (0.8 mmol, 141 mg), 1,10-phenanthroline (0.4 mmol, 80 mg) and 13 ml H2O were added and stirred thoroughly for 1 h, then heated at 393 K for 2 d. After cooling down to room temperature, some colorless crystalline product (I) was obtained.

Refinement top

The structure was solved using direct methods and refined by full-matrix least-squares techniques. All non-hydrogen atoms were assigned anisotropic displacement parameters in the refinement. All H atoms were added at calculated positions and refined using a riding model.(Sheldrick, 2008). The maximum (2.79) and minumum (-3.20) in the difference electron density were found at 0.0198 0.3244 0.7024 [1.01 Å from DY1] and 0.2071 0.4512 0.7963 [0.60 Å from DY1], respectively.

The O6 has ADP max/min ratio 6.70. This result may be due to the packing of supramolecule.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009; van der Sluis & Spek, 1990); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure and labeling of the title compound, with displacement ellipsoids drawn at the 30% probability level and H atoms shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing diagram viewed along the a-direction, Dy: green diagonal; I: purple inner dot; O: red; and H: small blue circles. And hydrogen bonds are denoted as dash lines.
dysprosium(III) triiodate(V) dihydrate top
Crystal data top
Dy(IO3)3H2O·H2OZ = 2
Mr = 723.23F(000) = 634
Triclinic, P1Dx = 4.766 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 7.1599 (1) ÅCell parameters from 1561 reflections
b = 7.4292 (1) Åθ = 2.0–27.5°
c = 10.6443 (1) ŵ = 16.65 mm1
α = 95.161 (12)°T = 293 K
β = 104.858 (7)°Block, colourless
γ = 110.081 (8)°0.16 × 0.12 × 0.06 mm
V = 504.00 (5) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2260 independent reflections
Radiation source: fine-focus sealed tube2067 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 3.2°
CCD profile fitting scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 79
Tmin = 0.136, Tmax = 0.435l = 1313
3819 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0647P)2 + 5.3292P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2260 reflectionsΔρmax = 2.79 e Å3
141 parametersΔρmin = 3.20 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0126 (8)
Crystal data top
Dy(IO3)3H2O·H2Oγ = 110.081 (8)°
Mr = 723.23V = 504.00 (5) Å3
Triclinic, P1Z = 2
a = 7.1599 (1) ÅMo Kα radiation
b = 7.4292 (1) ŵ = 16.65 mm1
c = 10.6443 (1) ÅT = 293 K
α = 95.161 (12)°0.16 × 0.12 × 0.06 mm
β = 104.858 (7)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2260 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2067 reflections with I > 2σ(I)
Tmin = 0.136, Tmax = 0.435Rint = 0.027
3819 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0382 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 2.79 e Å3
2260 reflectionsΔρmin = 3.20 e Å3
141 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Dy10.11491 (7)0.58338 (7)0.21096 (4)0.01105 (18)
I10.30890 (8)0.14149 (8)0.07303 (5)0.00659 (18)
I20.28110 (8)0.63445 (8)0.16834 (5)0.00652 (18)
I30.27848 (9)0.26870 (9)0.45631 (6)0.00862 (19)
O10.1496 (11)0.2711 (12)0.0929 (7)0.0178 (15)
O20.0966 (11)0.1450 (11)0.1365 (7)0.0144 (14)
O30.3778 (11)0.1033 (10)0.0380 (7)0.0134 (14)
O40.2940 (11)0.5350 (11)0.0209 (7)0.0155 (15)
O50.2291 (10)0.4405 (11)0.2502 (7)0.0131 (14)
O60.5556 (10)0.5510 (11)0.2555 (7)0.0121 (14)
O70.0908 (11)0.3710 (11)0.3699 (7)0.0130 (14)
O80.1065 (11)0.1986 (11)0.5813 (7)0.0125 (14)
O90.4335 (11)0.0352 (12)0.3515 (8)0.0187 (16)
O100.2235 (12)0.8611 (12)0.2319 (8)0.0185 (16)
H10A0.198 (15)0.928 (9)0.179 (7)0.028*
H10B0.346 (4)0.8277 (13)0.221 (10)0.028*
O110.2419 (13)0.7837 (13)0.3943 (9)0.0257 (18)
H11A0.225 (3)0.897 (15)0.3811 (19)0.039*
H11B0.144 (13)0.7725 (18)0.412 (2)0.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Dy10.0094 (3)0.0136 (3)0.0131 (3)0.00658 (19)0.00455 (18)0.00444 (19)
I10.0048 (3)0.0061 (3)0.0105 (3)0.0031 (2)0.0028 (2)0.0041 (2)
I20.0040 (3)0.0067 (3)0.0111 (3)0.0040 (2)0.0027 (2)0.0039 (2)
I30.0076 (3)0.0109 (3)0.0101 (3)0.0063 (2)0.0032 (2)0.0026 (2)
O10.014 (3)0.023 (4)0.012 (3)0.010 (3)0.004 (3)0.002 (3)
O20.011 (3)0.014 (4)0.022 (4)0.006 (3)0.009 (3)0.007 (3)
O30.020 (3)0.006 (3)0.020 (4)0.007 (3)0.011 (3)0.006 (3)
O40.019 (4)0.013 (4)0.014 (3)0.006 (3)0.005 (3)0.006 (3)
O50.006 (3)0.014 (4)0.021 (4)0.005 (3)0.007 (3)0.002 (3)
O60.001 (3)0.016 (4)0.018 (3)0.002 (3)0.003 (3)0.007 (3)
O70.014 (3)0.020 (4)0.013 (3)0.012 (3)0.007 (3)0.013 (3)
O80.014 (3)0.013 (4)0.013 (3)0.005 (3)0.007 (3)0.006 (3)
O90.011 (3)0.018 (4)0.022 (4)0.005 (3)0.000 (3)0.002 (3)
O100.022 (4)0.023 (4)0.025 (4)0.019 (3)0.013 (3)0.011 (3)
O110.022 (4)0.022 (4)0.034 (5)0.007 (4)0.012 (4)0.005 (4)
Geometric parameters (Å, º) top
Dy1—O42.401 (7)I2—O61.798 (6)
Dy1—O2i2.408 (7)I2—O41.804 (7)
Dy1—O8ii2.412 (7)I2—O51.812 (7)
Dy1—O6iii2.415 (6)I3—O91.783 (8)
Dy1—O72.429 (6)I3—O81.812 (7)
Dy1—O12.438 (8)I3—O71.813 (7)
Dy1—O102.453 (7)O2—Dy1i2.408 (7)
Dy1—O5i2.461 (6)O5—Dy1i2.461 (6)
I1—O11.804 (7)O6—Dy1iii2.415 (6)
I1—O21.809 (7)O8—Dy1ii2.412 (7)
I1—O31.814 (7)
O4—Dy1—O2i75.1 (2)O7—Dy1—O10126.1 (2)
O4—Dy1—O8ii149.7 (2)O1—Dy1—O10151.9 (2)
O2i—Dy1—O8ii78.5 (2)O4—Dy1—O5i112.2 (2)
O4—Dy1—O6iii90.6 (2)O2i—Dy1—O5i73.6 (2)
O2i—Dy1—O6iii142.8 (2)O8ii—Dy1—O5i73.6 (2)
O8ii—Dy1—O6iii101.7 (2)O6iii—Dy1—O5i142.8 (2)
O4—Dy1—O7135.1 (3)O7—Dy1—O5i72.9 (2)
O2i—Dy1—O7141.9 (2)O1—Dy1—O5i69.4 (2)
O8ii—Dy1—O775.1 (2)O10—Dy1—O5i132.9 (3)
O6iii—Dy1—O770.3 (2)O1—I1—O296.8 (3)
O4—Dy1—O169.2 (2)O1—I1—O397.2 (3)
O2i—Dy1—O1111.8 (3)O2—I1—O397.7 (3)
O8ii—Dy1—O1136.0 (2)O6—I2—O499.6 (3)
O6iii—Dy1—O193.9 (3)O6—I2—O597.8 (3)
O7—Dy1—O172.0 (2)O4—I2—O595.5 (3)
O4—Dy1—O1084.5 (3)O9—I3—O899.4 (3)
O2i—Dy1—O1068.8 (3)O9—I3—O7101.4 (3)
O8ii—Dy1—O1072.1 (2)O8—I3—O796.1 (3)
O6iii—Dy1—O1075.9 (3)
Symmetry codes: (i) x, y1, z; (ii) x, y1, z1; (iii) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10A···O3iv0.802.292.873 (10)131
O10—H10B···O9iv0.802.332.753 (11)114
O11—H11A···O8v0.802.222.954 (11)153
O11—H11B···O7i0.802.262.946 (11)145
Symmetry codes: (i) x, y1, z; (iv) x, y1, z; (v) x, y1, z+1.

Experimental details

Crystal data
Chemical formulaDy(IO3)3H2O·H2O
Mr723.23
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.1599 (1), 7.4292 (1), 10.6443 (1)
α, β, γ (°)95.161 (12), 104.858 (7), 110.081 (8)
V3)504.00 (5)
Z2
Radiation typeMo Kα
µ (mm1)16.65
Crystal size (mm)0.16 × 0.12 × 0.06
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.136, 0.435
No. of measured, independent and
observed [I > 2σ(I)] reflections
3819, 2260, 2067
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.109, 1.06
No. of reflections2260
No. of parameters141
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.79, 3.20

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009; van der Sluis & Spek, 1990), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10A···O3i0.802.292.873 (10)131.2
O10—H10B···O9i0.802.332.753 (11)114.0
O11—H11A···O8ii0.802.222.954 (11)152.6
O11—H11B···O7iii0.802.262.946 (11)145.0
Symmetry codes: (i) x, y1, z; (ii) x, y1, z+1; (iii) x, y1, z.
 

Acknowledgements

The authors are grateful for financial support from the National Natural Science Foundation of China (project Nos. 50702054 and 20803070) and the Analysis and Testing Foundation of Zhejiang Province (project Nos. 2008F70034 and 2008F70053).

References

First citationAssefa, Z., Ling, J., Haire, R. G., Albrecht-Schmitt, T. E. & Sykora, R. E. (2006). J. Solid State Chem. 179, 3653–3663.  Web of Science CrossRef CAS Google Scholar
First citationChen, X. A., Xue, H. P., Chang, X. N., Zang, H. G. & Xiao, W. Q. (2005). J. Alloys Compd. 398, 173–177.  Web of Science CrossRef CAS Google Scholar
First citationDouglas, P., Hector, A. L., Levason, W., Light, M. E., Matthews, M. L. & Webster, M. (2004). Z. Anorg. Allg. Chem. 630, 479–483.  Web of Science CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiminga, R., Abrahams, S. C. & Bernstein, J. L. (1977). J. Chem. Phys. 67, 1015–1023.  CrossRef CAS Web of Science Google Scholar
First citationOk, K. M. & Halasyamani, P. S. (2005). Inorg. Chem. 44, 9353–9359.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRosenzweig, A. & Morosin, B. (1966). Acta Cryst. 20, 758–761.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201.  CrossRef Web of Science IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-G., Guo, M., Xiong, G., Jiang, B. & Wang, L. (2009). Acta Cryst. E65, i48.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages i61-i62
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds