organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[2,6-Di­chloro-4-(tri­fluoro­meth­yl)phen­yl]-5-iodo-4-tri­fluoro­methyl­sulfinyl-1H-pyrazole-3-carbo­nitrile

aKey Laboratory of Natural Pesticides and Chemical Biology of the Ministry of, Education, South China Agricultural University, Guangzhou 510642, People's Republic of China
*Correspondence e-mail: hhxu@scau.edu.cn

(Received 15 June 2009; accepted 29 June 2009; online 4 July 2009)

In the title compound, C12H2Cl2F6IN3OS, the dihedral angle between the planes of the benzene and pyrazole rings is 77.8 (2)°. In the crystal, a short I⋯N contact of 2.897 (5) Å occurs.

Related literature

For related structures containing phenylpyrazole, see: Shi et al. (2009[Shi, A.-E., Hou, Y.-J., Zhang, Y.-M., Hou, G.-F. & Gao, J.-S. (2009). Acta Cryst. E65, o690.]); Tang, Zhong, Li & Hu (2005[Tang, R.-Y., Zhong, P., Li, S.-Y. & Hu, M.-L. (2005). Acta Cryst. E61, o1564-o1565.]). Tang, Zhong, Lin, Hu & Shi (2005[Tang, R.-Y., Zhong, P., Lin, Q.-L., Hu, M.-L. & Shi, Q. (2005). Acta Cryst. E61, o4374-o4375.]).

[Scheme 1]

Experimental

Crystal data
  • C12H2Cl2F6IN3OS

  • Mr = 548.03

  • Monoclinic, P 21 /c

  • a = 9.5879 (3) Å

  • b = 13.7798 (4) Å

  • c = 14.3145 (5) Å

  • β = 107.400 (3)°

  • V = 1804.68 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 18.41 mm−1

  • T = 100 K

  • 0.45 × 0.27 × 0.19 mm

Data collection
  • Oxford Diffraction Gemini (Cu) X-ray Ultra diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.016, Tmax = 0.213

  • 8203 measured reflections

  • 3132 independent reflections

  • 3065 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.111

  • S = 1.13

  • 3132 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −1.25 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEX (McArdle, 1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The molecular structure of title compound, C12H2Cl2F6IN3OS, is shown in Fig.1. The dihedral angle between the benzene ring and the pyrazole ring is 77.8 (2)°, while the corresponding ones in the two related compounds,C12H4Cl2F6N4S (Tang, Zhong, Li & Hu, 2005) and C22H8Cl4F6N8S2 (Tang, Zhong, Lin, Hu & Shi, 2005), are 83.2 (1)° and 88.2 (1)°, respectively.

Related literature top

For related structures containing diphenic acid, see: Shi et al. (2009); Tang, Zhong, Li & Hu (2005). Tang, Zhong, Lin, Hu & Shi (2005).

Experimental top

98% Fipronil (4.4 g, 10 mmol) was resolved in 40 ml chloroform in a 100 ml round bottom flask equipped with magnetic stirrer and a calcium chloride tube. Then iodine (3.6 g,14 mmol) was added into the solution. Half an hour later tert-butyl nitrite(1.43 g) was added into the solution and the mixture was heated under reflux for 2 h. Then it was left at room temperature overnight. The reaction mixture was filtered. Then the filtrate was evaporated in vacuo. The solid residue was purified by chromatography eluting using petroleum/ethyl acetate (4:1) and further recrystallized from toluene/hexane to afford colourless crystals. Yield: 4.70 g (86%).

Refinement top

H atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction 2006); cell refinement: CrysAlis RED (Oxford Diffraction 2006); data reduction: CrysAlis RED (Oxford Diffraction 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97/2 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitary radii.
1-[2,6-Dichloro-4-(trifluoromethyl)phenyl]-5-iodo-4-trifluoromethylsulfinyl- 1H-pyrazole-3-carbonitrile top
Crystal data top
C12H2Cl2F6IN3OSF(000) = 1040
Mr = 548.03Dx = 2.017 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 3132 reflections
a = 9.5879 (3) Åθ = 4.6–67.0°
b = 13.7798 (4) ŵ = 18.41 mm1
c = 14.3145 (5) ÅT = 100 K
β = 107.400 (3)°Prism, colorless
V = 1804.68 (10) Å30.45 × 0.27 × 0.19 mm
Z = 4
Data collection top
Oxford Diffraction Gemini (Cu) X-ray Ultra
diffractometer
3132 independent reflections
Radiation source: fine-focus sealed tube3065 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.041
ω and π scansθmax = 67.0°, θmin = 4.6°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction 2006)
h = 1011
Tmin = 0.016, Tmax = 0.213k = 1615
8203 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0636P)2 + 4.9895P]
where P = (Fo2 + 2Fc2)/3
3132 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 1.25 e Å3
Crystal data top
C12H2Cl2F6IN3OSV = 1804.68 (10) Å3
Mr = 548.03Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.5879 (3) ŵ = 18.41 mm1
b = 13.7798 (4) ÅT = 100 K
c = 14.3145 (5) Å0.45 × 0.27 × 0.19 mm
β = 107.400 (3)°
Data collection top
Oxford Diffraction Gemini (Cu) X-ray Ultra
diffractometer
3132 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction 2006)
3065 reflections with I > 2σ(I)
Tmin = 0.016, Tmax = 0.213Rint = 0.041
8203 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.13Δρmax = 0.77 e Å3
3132 reflectionsΔρmin = 1.25 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.32209 (3)0.65606 (2)0.31318 (2)0.02325 (15)
Cl10.49232 (14)0.42087 (8)0.14823 (9)0.0336 (3)
Cl20.37074 (16)0.80256 (8)0.09630 (9)0.0364 (3)
S10.70639 (13)0.70720 (8)0.47083 (8)0.0257 (3)
O10.8422 (4)0.7630 (3)0.4932 (3)0.0360 (8)
N10.5348 (4)0.6307 (3)0.1980 (3)0.0215 (8)
N20.6758 (4)0.6311 (4)0.1956 (3)0.0312 (10)
N31.0327 (6)0.6582 (4)0.3373 (4)0.0474 (15)
C10.1794 (5)0.5669 (3)0.0465 (3)0.0238 (10)
C20.2659 (5)0.4911 (3)0.0021 (3)0.0230 (9)
H2A0.24480.42730.01830.028*
C30.3855 (5)0.5134 (3)0.0823 (3)0.0219 (9)
C40.4171 (5)0.6096 (3)0.1111 (3)0.0217 (9)
C50.3304 (6)0.6833 (4)0.0603 (4)0.0263 (10)
C60.2084 (6)0.6628 (3)0.0189 (4)0.0279 (11)
H6A0.14800.71240.05230.034*
C70.0517 (6)0.5443 (4)0.1351 (4)0.0304 (11)
C80.5210 (5)0.6523 (3)0.2870 (4)0.0182 (9)
C90.6611 (5)0.6671 (3)0.3484 (4)0.0228 (10)
C100.7517 (6)0.6527 (3)0.2873 (4)0.0276 (11)
C110.9089 (6)0.6571 (4)0.3153 (5)0.0350 (14)
C120.7590 (6)0.5852 (4)0.5261 (4)0.0391 (13)
F10.0028 (4)0.4545 (3)0.1333 (3)0.0488 (9)
F20.0883 (4)0.5527 (3)0.2176 (2)0.0439 (8)
F30.0603 (4)0.6042 (3)0.1430 (3)0.0487 (9)
F40.6443 (4)0.5270 (2)0.4989 (3)0.0503 (9)
F50.7988 (5)0.5949 (3)0.6227 (3)0.0585 (11)
F60.8683 (4)0.5472 (3)0.5007 (3)0.0624 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0165 (2)0.0296 (2)0.0220 (2)0.00092 (10)0.00320 (13)0.00227 (10)
Cl10.0314 (6)0.0221 (6)0.0387 (7)0.0056 (5)0.0026 (5)0.0011 (5)
Cl20.0574 (8)0.0171 (6)0.0285 (6)0.0045 (5)0.0033 (5)0.0014 (4)
S10.0264 (6)0.0222 (6)0.0230 (6)0.0021 (4)0.0008 (4)0.0002 (4)
O10.038 (2)0.0290 (19)0.036 (2)0.0106 (16)0.0032 (16)0.0038 (16)
N10.0142 (18)0.0247 (19)0.0225 (19)0.0027 (16)0.0008 (15)0.0014 (16)
N20.025 (2)0.034 (2)0.035 (2)0.0073 (17)0.010 (2)0.0099 (19)
N30.021 (3)0.064 (4)0.058 (3)0.011 (2)0.013 (2)0.035 (3)
C10.025 (2)0.024 (2)0.021 (2)0.0014 (19)0.0050 (19)0.0004 (19)
C20.024 (2)0.019 (2)0.024 (2)0.0002 (18)0.0043 (19)0.0038 (18)
C30.022 (2)0.020 (2)0.023 (2)0.0009 (18)0.0050 (18)0.0004 (18)
C40.019 (2)0.023 (2)0.021 (2)0.0055 (18)0.0039 (18)0.0053 (18)
C50.040 (3)0.018 (2)0.020 (2)0.002 (2)0.007 (2)0.0022 (19)
C60.034 (3)0.022 (2)0.024 (2)0.0029 (19)0.002 (2)0.0020 (18)
C70.025 (2)0.031 (3)0.030 (3)0.003 (2)0.000 (2)0.004 (2)
C80.010 (2)0.018 (2)0.025 (2)0.0004 (15)0.0038 (18)0.0011 (16)
C90.021 (2)0.017 (2)0.027 (3)0.0013 (17)0.002 (2)0.0014 (17)
C100.019 (3)0.027 (3)0.036 (3)0.0075 (18)0.007 (2)0.009 (2)
C110.025 (3)0.038 (3)0.043 (3)0.008 (2)0.012 (2)0.022 (2)
C120.034 (3)0.029 (3)0.042 (3)0.002 (2)0.008 (2)0.009 (2)
F10.047 (2)0.0386 (18)0.0447 (19)0.0169 (16)0.0112 (15)0.0053 (15)
F20.0371 (18)0.069 (2)0.0202 (14)0.0001 (16)0.0001 (12)0.0055 (15)
F30.0321 (17)0.055 (2)0.048 (2)0.0130 (16)0.0052 (15)0.0163 (16)
F40.056 (2)0.0313 (17)0.053 (2)0.0147 (16)0.0008 (17)0.0124 (15)
F50.070 (3)0.054 (2)0.0337 (18)0.0074 (19)0.0127 (17)0.0158 (16)
F60.047 (2)0.049 (2)0.084 (3)0.0264 (18)0.009 (2)0.021 (2)
Geometric parameters (Å, º) top
I1—C82.051 (4)C2—H2A0.9300
Cl1—C31.728 (5)C3—C41.394 (6)
Cl2—C51.731 (5)C4—C51.375 (7)
S1—O11.463 (4)C5—C61.392 (7)
S1—C91.764 (5)C6—H6A0.9300
S1—C121.863 (6)C7—F11.327 (6)
N1—C81.353 (6)C7—F31.332 (6)
N1—N21.363 (6)C7—F21.333 (6)
N1—C41.438 (6)C8—C91.382 (7)
N2—C101.330 (7)C9—C101.419 (7)
N3—C111.134 (8)C10—C111.440 (8)
C1—C21.384 (7)C12—F61.316 (8)
C1—C61.384 (7)C12—F41.322 (7)
C1—C71.508 (6)C12—F51.327 (7)
C2—C31.393 (7)
O1—S1—C9108.7 (2)C5—C6—H6A120.8
O1—S1—C12105.8 (2)F1—C7—F3107.4 (4)
C9—S1—C1295.4 (2)F1—C7—F2106.6 (4)
C8—N1—N2113.6 (4)F3—C7—F2106.9 (4)
C8—N1—C4126.0 (4)F1—C7—C1112.2 (4)
N2—N1—C4120.5 (4)F3—C7—C1112.0 (4)
C10—N2—N1103.3 (4)F2—C7—C1111.4 (4)
C2—C1—C6122.5 (5)N1—C8—C9106.3 (4)
C2—C1—C7118.7 (4)N1—C8—I1122.4 (3)
C6—C1—C7118.7 (5)C9—C8—I1131.3 (4)
C1—C2—C3118.0 (4)C8—C9—C10104.2 (4)
C1—C2—H2A121.0C8—C9—S1125.6 (4)
C3—C2—H2A121.0C10—C9—S1129.9 (4)
C2—C3—C4120.4 (4)N2—C10—C9112.6 (5)
C2—C3—Cl1119.7 (4)N2—C10—C11120.1 (5)
C4—C3—Cl1119.9 (4)C9—C10—C11127.2 (5)
C5—C4—C3120.2 (4)N3—C11—C10178.4 (6)
C5—C4—N1120.1 (4)F6—C12—F4109.8 (5)
C3—C4—N1119.6 (4)F6—C12—F5108.9 (5)
C4—C5—C6120.6 (4)F4—C12—F5108.8 (5)
C4—C5—Cl2119.9 (4)F6—C12—S1112.3 (4)
C6—C5—Cl2119.5 (4)F4—C12—S1109.1 (4)
C1—C6—C5118.3 (5)F5—C12—S1107.9 (4)
C1—C6—H6A120.8
C8—N1—N2—C100.7 (6)C2—C1—C7—F294.0 (5)
C4—N1—N2—C10179.8 (4)C6—C1—C7—F283.8 (6)
C6—C1—C2—C30.7 (7)N2—N1—C8—C90.7 (5)
C7—C1—C2—C3178.4 (4)C4—N1—C8—C9179.9 (4)
C1—C2—C3—C40.9 (7)N2—N1—C8—I1179.5 (3)
C1—C2—C3—Cl1177.4 (4)C4—N1—C8—I11.1 (6)
C2—C3—C4—C50.2 (7)N1—C8—C9—C100.3 (5)
Cl1—C3—C4—C5178.5 (4)I1—C8—C9—C10178.9 (3)
C2—C3—C4—N1175.7 (4)N1—C8—C9—S1174.4 (3)
Cl1—C3—C4—N12.6 (6)I1—C8—C9—S16.9 (6)
C8—N1—C4—C575.7 (6)O1—S1—C9—C8149.2 (4)
N2—N1—C4—C5103.6 (5)C12—S1—C9—C8102.1 (4)
C8—N1—C4—C3100.2 (6)O1—S1—C9—C1023.4 (5)
N2—N1—C4—C380.4 (6)C12—S1—C9—C1085.3 (5)
C3—C4—C5—C61.6 (7)N1—N2—C10—C90.5 (6)
N1—C4—C5—C6174.3 (5)N1—N2—C10—C11178.0 (5)
C3—C4—C5—Cl2179.8 (4)C8—C9—C10—N20.2 (6)
N1—C4—C5—Cl24.3 (6)S1—C9—C10—N2173.6 (4)
C2—C1—C6—C50.7 (8)C8—C9—C10—C11178.3 (5)
C7—C1—C6—C5177.1 (5)S1—C9—C10—C117.9 (8)
C4—C5—C6—C11.8 (8)O1—S1—C12—F650.8 (5)
Cl2—C5—C6—C1179.6 (4)C9—S1—C12—F660.4 (4)
C2—C1—C7—F125.4 (6)O1—S1—C12—F4172.7 (4)
C6—C1—C7—F1156.8 (5)C9—S1—C12—F461.5 (5)
C2—C1—C7—F3146.3 (5)O1—S1—C12—F569.2 (5)
C6—C1—C7—F335.9 (7)C9—S1—C12—F5179.6 (4)

Experimental details

Crystal data
Chemical formulaC12H2Cl2F6IN3OS
Mr548.03
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.5879 (3), 13.7798 (4), 14.3145 (5)
β (°) 107.400 (3)
V3)1804.68 (10)
Z4
Radiation typeCu Kα
µ (mm1)18.41
Crystal size (mm)0.45 × 0.27 × 0.19
Data collection
DiffractometerOxford Diffraction Gemini (Cu) X-ray Ultra
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction 2006)
Tmin, Tmax0.016, 0.213
No. of measured, independent and
observed [I > 2σ(I)] reflections
8203, 3132, 3065
Rint0.041
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.111, 1.13
No. of reflections3132
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 1.25

Computer programs: CrysAlis CCD (Oxford Diffraction 2006), CrysAlis RED (Oxford Diffraction 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEX (McArdle, 1995), SHELXL97/2 (Sheldrick, 2008).

 

Acknowledgements

This project was sponsored by the Key Project of the Chinese Ministry of Education (No. 209092) and the President's Fund of South China Agricultural University (No. 2008 K038).

References

First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, A.-E., Hou, Y.-J., Zhang, Y.-M., Hou, G.-F. & Gao, J.-S. (2009). Acta Cryst. E65, o690.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, R.-Y., Zhong, P., Li, S.-Y. & Hu, M.-L. (2005). Acta Cryst. E61, o1564–o1565.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, R.-Y., Zhong, P., Lin, Q.-L., Hu, M.-L. & Shi, Q. (2005). Acta Cryst. E61, o4374–o4375.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds