organic compounds
Methyl 2-methyl-2H-1,2,3-triazole-4-carboxylate
aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, and bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
*Correspondence e-mail: nawaz_f@yahoo.co.in
In the title compound, C5H7N3O2, all non-H atoms lie in a common plane, with a maximum deviation of 0.061 (2)° for the ester methyl C atom. The structure is stabilized by intermolecular C—H⋯O hydrogen bonds.
Related literature
For general background to the applications of triazoles and their derivatives, see: Abu-Orabi et al. (1989); Fan & Katritzky (1996); Dehne (1994); Wang et al. (1998). For a related structure, see: Prabakaran et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlisPro CCD (Oxford Diffraction, 2009); cell CrysAlisPro CCD; data reduction: CrysAlisPro RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809024829/bt2973sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809024829/bt2973Isup2.hkl
To Methyl 1H-1,2,3-triazole-4-carboxylate (2 g) in dry DMF (15 ml) maintained at 273 K in nitrogen atmosphere, was added K2CO3 (1.3 g), metyliodide (ml), the mixture was then stirred at 273 K for 1hr, allowed to warm to room temperature and stirred till completion of reaction, monitored by TLC. The reaction mixture on LCMS analysis showed three isomers well separated with their significant
and high purity. Three fractions were identified by The solvent was evaporated under vacuo and the residue was isolated into individual isomers by A portion of the mixture was also analysed by HPLC analysis and also isolated by preparative HPLC techniques. The single crystal of the title compound for X-ray structure anlaysis was obtained from ether solution by slow evaporation.All the H atoms in were positioned geometrically and refined using a riding model with C—H bond lenghts of 0.93 Å and 0.96 Å for aromatic and for methyl H atoms respectively and Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(Cmethyl). The methyl groups were allowed to rotate but not to tip.
Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell
CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1999) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. ORTEP diagram of the asymmetric unit of (I) with 50% probability displacement ellipsoids. |
C5H7N3O2 | F(000) = 296 |
Mr = 141.14 | Dx = 1.379 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 783 reflections |
a = 3.9482 (10) Å | θ = 2.0–21.4° |
b = 7.9549 (15) Å | µ = 0.11 mm−1 |
c = 21.655 (4) Å | T = 290 K |
β = 92.05 (2)° | Plate, colorless |
V = 679.7 (2) Å3 | 0.30 × 0.20 × 0.10 mm |
Z = 4 |
Oxford Xcalibur Eos(Nova) CCD detector diffractometer | 1262 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 910 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.043 |
ω scans | θmax = 25.5°, θmin = 3.2° |
Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009) | h = −4→4 |
Tmin = 0.926, Tmax = 0.989 | k = −9→9 |
7464 measured reflections | l = −26→26 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.119 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0589P)2 + 0.0659P] where P = (Fo2 + 2Fc2)/3 |
1262 reflections | (Δ/σ)max < 0.001 |
93 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.17 e Å−3 |
C5H7N3O2 | V = 679.7 (2) Å3 |
Mr = 141.14 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 3.9482 (10) Å | µ = 0.11 mm−1 |
b = 7.9549 (15) Å | T = 290 K |
c = 21.655 (4) Å | 0.30 × 0.20 × 0.10 mm |
β = 92.05 (2)° |
Oxford Xcalibur Eos(Nova) CCD detector diffractometer | 1262 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009) | 910 reflections with I > 2σ(I) |
Tmin = 0.926, Tmax = 0.989 | Rint = 0.043 |
7464 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.119 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.19 e Å−3 |
1262 reflections | Δρmin = −0.17 e Å−3 |
93 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.2453 (4) | 0.56849 (18) | 0.43005 (7) | 0.0442 (4) | |
N2 | 0.3338 (4) | 0.71794 (19) | 0.45090 (7) | 0.0449 (4) | |
N3 | 0.4803 (5) | 0.8185 (2) | 0.41047 (7) | 0.0562 (5) | |
O1 | 0.3755 (4) | 0.42664 (18) | 0.27655 (6) | 0.0620 (5) | |
O2 | 0.1319 (4) | 0.29948 (17) | 0.35597 (6) | 0.0539 (4) | |
C1 | 0.4849 (6) | 0.7258 (2) | 0.35967 (9) | 0.0547 (6) | |
H1 | 0.5707 | 0.7596 | 0.3222 | 0.066* | |
C2 | 0.3408 (5) | 0.5700 (2) | 0.37131 (8) | 0.0407 (5) | |
C3 | 0.2884 (5) | 0.4274 (2) | 0.32930 (8) | 0.0435 (5) | |
C4 | 0.0524 (6) | 0.1556 (3) | 0.31750 (10) | 0.0634 (6) | |
H4A | −0.0937 | 0.1895 | 0.2834 | 0.095* | |
H4B | −0.0597 | 0.0720 | 0.3414 | 0.095* | |
H4C | 0.2579 | 0.1095 | 0.3022 | 0.095* | |
C5 | 0.2690 (6) | 0.7700 (3) | 0.51385 (9) | 0.0567 (6) | |
H5A | 0.1463 | 0.6831 | 0.5342 | 0.085* | |
H5B | 0.1374 | 0.8715 | 0.5130 | 0.085* | |
H5C | 0.4805 | 0.7896 | 0.5359 | 0.085* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0534 (11) | 0.0371 (9) | 0.0423 (9) | −0.0034 (7) | 0.0041 (7) | 0.0000 (7) |
N2 | 0.0581 (11) | 0.0348 (9) | 0.0419 (9) | −0.0033 (7) | 0.0029 (7) | −0.0004 (7) |
N3 | 0.0755 (13) | 0.0424 (10) | 0.0511 (10) | −0.0100 (9) | 0.0069 (9) | 0.0050 (8) |
O1 | 0.0904 (12) | 0.0553 (9) | 0.0413 (8) | 0.0058 (8) | 0.0164 (7) | 0.0007 (6) |
O2 | 0.0715 (10) | 0.0457 (8) | 0.0450 (8) | −0.0120 (7) | 0.0066 (6) | −0.0058 (6) |
C1 | 0.0740 (15) | 0.0480 (12) | 0.0427 (11) | −0.0060 (10) | 0.0109 (10) | 0.0065 (9) |
C2 | 0.0454 (11) | 0.0381 (10) | 0.0388 (10) | 0.0017 (8) | 0.0034 (8) | 0.0050 (8) |
C3 | 0.0502 (12) | 0.0422 (11) | 0.0382 (10) | 0.0072 (9) | 0.0018 (8) | 0.0038 (8) |
C4 | 0.0752 (16) | 0.0449 (12) | 0.0699 (15) | −0.0064 (11) | 0.0016 (12) | −0.0155 (10) |
C5 | 0.0770 (16) | 0.0479 (13) | 0.0455 (11) | −0.0022 (10) | 0.0067 (10) | −0.0084 (9) |
N1—N2 | 1.315 (2) | C1—H1 | 0.9300 |
N1—C2 | 1.340 (2) | C2—C3 | 1.464 (3) |
N2—N3 | 1.333 (2) | C4—H4A | 0.9600 |
N2—C5 | 1.456 (2) | C4—H4B | 0.9600 |
N3—C1 | 1.325 (2) | C4—H4C | 0.9600 |
O1—C3 | 1.205 (2) | C5—H5A | 0.9600 |
O2—C3 | 1.333 (2) | C5—H5B | 0.9600 |
O2—C4 | 1.444 (2) | C5—H5C | 0.9600 |
C1—C2 | 1.391 (3) | ||
N2—N1—C2 | 103.75 (15) | O2—C3—C2 | 112.31 (16) |
N1—N2—N3 | 115.69 (15) | O2—C4—H4A | 109.5 |
N1—N2—C5 | 121.67 (15) | O2—C4—H4B | 109.5 |
N3—N2—C5 | 122.63 (16) | H4A—C4—H4B | 109.5 |
C1—N3—N2 | 103.33 (16) | O2—C4—H4C | 109.5 |
C3—O2—C4 | 116.74 (16) | H4A—C4—H4C | 109.5 |
N3—C1—C2 | 109.13 (17) | H4B—C4—H4C | 109.5 |
N3—C1—H1 | 125.4 | N2—C5—H5A | 109.5 |
C2—C1—H1 | 125.4 | N2—C5—H5B | 109.5 |
N1—C2—C1 | 108.10 (16) | H5A—C5—H5B | 109.5 |
N1—C2—C3 | 123.02 (17) | N2—C5—H5C | 109.5 |
C1—C2—C3 | 128.88 (17) | H5A—C5—H5C | 109.5 |
O1—C3—O2 | 124.03 (17) | H5B—C5—H5C | 109.5 |
O1—C3—C2 | 123.65 (18) | ||
C2—N1—N2—N3 | 0.1 (2) | N3—C1—C2—C3 | 179.47 (18) |
C2—N1—N2—C5 | 179.01 (17) | C4—O2—C3—O1 | −2.7 (3) |
N1—N2—N3—C1 | 0.2 (2) | C4—O2—C3—C2 | 176.96 (16) |
C5—N2—N3—C1 | −178.75 (18) | N1—C2—C3—O1 | −179.38 (18) |
N2—N3—C1—C2 | −0.3 (2) | C1—C2—C3—O1 | 1.7 (3) |
N2—N1—C2—C1 | −0.3 (2) | N1—C2—C3—O2 | 1.0 (3) |
N2—N1—C2—C3 | −179.42 (17) | C1—C2—C3—O2 | −177.96 (19) |
N3—C1—C2—N1 | 0.4 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O1i | 0.93 | 2.53 | 3.416 (3) | 159 |
Symmetry code: (i) −x+1, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C5H7N3O2 |
Mr | 141.14 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 290 |
a, b, c (Å) | 3.9482 (10), 7.9549 (15), 21.655 (4) |
β (°) | 92.05 (2) |
V (Å3) | 679.7 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.30 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Oxford Xcalibur Eos(Nova) CCD detector diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.926, 0.989 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7464, 1262, 910 |
Rint | 0.043 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.119, 1.07 |
No. of reflections | 1262 |
No. of parameters | 93 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.19, −0.17 |
Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1999) and CAMERON (Watkin et al., 1993), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O1i | 0.9300 | 2.5300 | 3.416 (3) | 159.00 |
Symmetry code: (i) −x+1, y+1/2, −z+1/2. |
Acknowledgements
We thank the Department of Science and Technology, India, for use of the CCD facility setup under the IRHPA–DST program at IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.
References
Abu-Orabi, S. T., Alfah, M. A., Jibril, I., Mari'i, F. M. & Ali, A. A. S. (1989). J. Heterocycl. Chem. 26, 1461–1468. CrossRef CAS Google Scholar
Dehne, H. (1994). Editor. Methoden der Organischen Chemie, 8th Ed., pp. 305–405. Stuttgart: Thieme. Google Scholar
Fan, W.-Q. & Katritzky, A. R. (1996). In Comprehensive Heterocyclic Chemistry II, Vol. 4, edited by A. R. Katritzky, C. W. Rees & E. F. V Scriven, pp. 1–126. Oxford: Pergamon. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlisPro CCD and CrysAlisPro RED, including ABSPACK. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Prabakaran, K., Maiyalagan, T., Hathwar, V. R., Kazak, C. & Khan, F. N. (2009). Acta Cryst. E65, o300. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Z., Jian, F., Duan, C., Bai, Z. & You, X. (1998). Acta Cryst. C54, 1927–1929. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Triazoles and their derivatives find their application in pharmaceuticals, agrochemicals, dyes, photographic materials, and in corrosion inhibition (Fan & Katritzky, 1996; Dehne,1994; Abu-Orabi et al., 1989). In continuous of our earlier report (Prabakaran et al., 2009), here the crystal structure of the title compound is presented. All non-H atoms lie in a common plane with maximum deviation of 0.061 (2)° for atom C4. The packing is stabilized by C—H···O hydrogen bonds.