organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-methyl-2H-1,2,3-triazole-4-carboxyl­ate

aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, and bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
*Correspondence e-mail: nawaz_f@yahoo.co.in

(Received 16 June 2009; accepted 27 June 2009; online 4 July 2009)

In the title compound, C5H7N3O2, all non-H atoms lie in a common plane, with a maximum deviation of 0.061 (2)° for the ester methyl C atom. The structure is stabilized by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For general background to the applications of triazoles and their derivatives, see: Abu-Orabi et al. (1989[Abu-Orabi, S. T., Alfah, M. A., Jibril, I., Mari'i, F. M. & Ali, A. A. S. (1989). J. Heterocycl. Chem. 26, 1461-1468.]); Fan & Katritzky (1996[Fan, W.-Q. & Katritzky, A. R. (1996). In Comprehensive Heterocyclic Chemistry II, Vol. 4, edited by A. R. Katritzky, C. W. Rees & E. F. V Scriven, pp. 1-126. Oxford: Pergamon.]); Dehne (1994[Dehne, H. (1994). Editor. Methoden der Organischen Chemie, 8th Ed., pp. 305-405. Stuttgart: Thieme.]); Wang et al. (1998[Wang, Z., Jian, F., Duan, C., Bai, Z. & You, X. (1998). Acta Cryst. C54, 1927-1929.]). For a related structure, see: Prabakaran et al. (2009[Prabakaran, K., Maiyalagan, T., Hathwar, V. R., Kazak, C. & Khan, F. N. (2009). Acta Cryst. E65, o300.]).

[Scheme 1]

Experimental

Crystal data
  • C5H7N3O2

  • Mr = 141.14

  • Monoclinic, P 21 /c

  • a = 3.9482 (10) Å

  • b = 7.9549 (15) Å

  • c = 21.655 (4) Å

  • β = 92.05 (2)°

  • V = 679.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 290 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Oxford Xcalibur Eos(Nova) CCD detector diffractometer

  • Absorption correction: multi-scan (CrysAlisPro RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlisPro CCD and CrysAlisPro RED, including ABSPACK. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.926, Tmax = 0.989

  • 7464 measured reflections

  • 1262 independent reflections

  • 910 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.119

  • S = 1.07

  • 1262 reflections

  • 93 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.93 2.53 3.416 (3) 159
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlisPro CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlisPro CCD and CrysAlisPro RED, including ABSPACK. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlisPro CCD; data reduction: CrysAlisPro RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlisPro CCD and CrysAlisPro RED, including ABSPACK. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1993[Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Triazoles and their derivatives find their application in pharmaceuticals, agrochemicals, dyes, photographic materials, and in corrosion inhibition (Fan & Katritzky, 1996; Dehne,1994; Abu-Orabi et al., 1989). In continuous of our earlier report (Prabakaran et al., 2009), here the crystal structure of the title compound is presented. All non-H atoms lie in a common plane with maximum deviation of 0.061 (2)° for atom C4. The packing is stabilized by C—H···O hydrogen bonds.

Related literature top

For general background to the applications of triazoles and their derivatives, see: Abu-Orabi et al. (1989); Fan & Katritzky (1996); Dehne (1994); Wang et al. (1998). For a related structure, see: Prabakaran et al. (2009).

Experimental top

To Methyl 1H-1,2,3-triazole-4-carboxylate (2 g) in dry DMF (15 ml) maintained at 273 K in nitrogen atmosphere, was added K2CO3 (1.3 g), metyliodide (ml), the mixture was then stirred at 273 K for 1hr, allowed to warm to room temperature and stirred till completion of reaction, monitored by TLC. The reaction mixture on LCMS analysis showed three isomers well separated with their significant retention time and high purity. Three fractions were identified by mass spectroscopy. The solvent was evaporated under vacuo and the residue was isolated into individual isomers by column chromatography. A portion of the mixture was also analysed by HPLC analysis and also isolated by preparative HPLC techniques. The single crystal of the title compound for X-ray structure anlaysis was obtained from ether solution by slow evaporation.

Refinement top

All the H atoms in were positioned geometrically and refined using a riding model with C—H bond lenghts of 0.93 Å and 0.96 Å for aromatic and for methyl H atoms respectively and Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(Cmethyl). The methyl groups were allowed to rotate but not to tip.

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1999) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the asymmetric unit of (I) with 50% probability displacement ellipsoids.
Methyl 2-methyl-2H-1,2,3-triazole-4-carboxylate top
Crystal data top
C5H7N3O2F(000) = 296
Mr = 141.14Dx = 1.379 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 783 reflections
a = 3.9482 (10) Åθ = 2.0–21.4°
b = 7.9549 (15) ŵ = 0.11 mm1
c = 21.655 (4) ÅT = 290 K
β = 92.05 (2)°Plate, colorless
V = 679.7 (2) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Oxford Xcalibur Eos(Nova) CCD detector
diffractometer
1262 independent reflections
Radiation source: Enhance (Mo) X-ray Source910 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 25.5°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
h = 44
Tmin = 0.926, Tmax = 0.989k = 99
7464 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0589P)2 + 0.0659P]
where P = (Fo2 + 2Fc2)/3
1262 reflections(Δ/σ)max < 0.001
93 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C5H7N3O2V = 679.7 (2) Å3
Mr = 141.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.9482 (10) ŵ = 0.11 mm1
b = 7.9549 (15) ÅT = 290 K
c = 21.655 (4) Å0.30 × 0.20 × 0.10 mm
β = 92.05 (2)°
Data collection top
Oxford Xcalibur Eos(Nova) CCD detector
diffractometer
1262 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
910 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.989Rint = 0.043
7464 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.07Δρmax = 0.19 e Å3
1262 reflectionsΔρmin = 0.17 e Å3
93 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2453 (4)0.56849 (18)0.43005 (7)0.0442 (4)
N20.3338 (4)0.71794 (19)0.45090 (7)0.0449 (4)
N30.4803 (5)0.8185 (2)0.41047 (7)0.0562 (5)
O10.3755 (4)0.42664 (18)0.27655 (6)0.0620 (5)
O20.1319 (4)0.29948 (17)0.35597 (6)0.0539 (4)
C10.4849 (6)0.7258 (2)0.35967 (9)0.0547 (6)
H10.57070.75960.32220.066*
C20.3408 (5)0.5700 (2)0.37131 (8)0.0407 (5)
C30.2884 (5)0.4274 (2)0.32930 (8)0.0435 (5)
C40.0524 (6)0.1556 (3)0.31750 (10)0.0634 (6)
H4A0.09370.18950.28340.095*
H4B0.05970.07200.34140.095*
H4C0.25790.10950.30220.095*
C50.2690 (6)0.7700 (3)0.51385 (9)0.0567 (6)
H5A0.14630.68310.53420.085*
H5B0.13740.87150.51300.085*
H5C0.48050.78960.53590.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0534 (11)0.0371 (9)0.0423 (9)0.0034 (7)0.0041 (7)0.0000 (7)
N20.0581 (11)0.0348 (9)0.0419 (9)0.0033 (7)0.0029 (7)0.0004 (7)
N30.0755 (13)0.0424 (10)0.0511 (10)0.0100 (9)0.0069 (9)0.0050 (8)
O10.0904 (12)0.0553 (9)0.0413 (8)0.0058 (8)0.0164 (7)0.0007 (6)
O20.0715 (10)0.0457 (8)0.0450 (8)0.0120 (7)0.0066 (6)0.0058 (6)
C10.0740 (15)0.0480 (12)0.0427 (11)0.0060 (10)0.0109 (10)0.0065 (9)
C20.0454 (11)0.0381 (10)0.0388 (10)0.0017 (8)0.0034 (8)0.0050 (8)
C30.0502 (12)0.0422 (11)0.0382 (10)0.0072 (9)0.0018 (8)0.0038 (8)
C40.0752 (16)0.0449 (12)0.0699 (15)0.0064 (11)0.0016 (12)0.0155 (10)
C50.0770 (16)0.0479 (13)0.0455 (11)0.0022 (10)0.0067 (10)0.0084 (9)
Geometric parameters (Å, º) top
N1—N21.315 (2)C1—H10.9300
N1—C21.340 (2)C2—C31.464 (3)
N2—N31.333 (2)C4—H4A0.9600
N2—C51.456 (2)C4—H4B0.9600
N3—C11.325 (2)C4—H4C0.9600
O1—C31.205 (2)C5—H5A0.9600
O2—C31.333 (2)C5—H5B0.9600
O2—C41.444 (2)C5—H5C0.9600
C1—C21.391 (3)
N2—N1—C2103.75 (15)O2—C3—C2112.31 (16)
N1—N2—N3115.69 (15)O2—C4—H4A109.5
N1—N2—C5121.67 (15)O2—C4—H4B109.5
N3—N2—C5122.63 (16)H4A—C4—H4B109.5
C1—N3—N2103.33 (16)O2—C4—H4C109.5
C3—O2—C4116.74 (16)H4A—C4—H4C109.5
N3—C1—C2109.13 (17)H4B—C4—H4C109.5
N3—C1—H1125.4N2—C5—H5A109.5
C2—C1—H1125.4N2—C5—H5B109.5
N1—C2—C1108.10 (16)H5A—C5—H5B109.5
N1—C2—C3123.02 (17)N2—C5—H5C109.5
C1—C2—C3128.88 (17)H5A—C5—H5C109.5
O1—C3—O2124.03 (17)H5B—C5—H5C109.5
O1—C3—C2123.65 (18)
C2—N1—N2—N30.1 (2)N3—C1—C2—C3179.47 (18)
C2—N1—N2—C5179.01 (17)C4—O2—C3—O12.7 (3)
N1—N2—N3—C10.2 (2)C4—O2—C3—C2176.96 (16)
C5—N2—N3—C1178.75 (18)N1—C2—C3—O1179.38 (18)
N2—N3—C1—C20.3 (2)C1—C2—C3—O11.7 (3)
N2—N1—C2—C10.3 (2)N1—C2—C3—O21.0 (3)
N2—N1—C2—C3179.42 (17)C1—C2—C3—O2177.96 (19)
N3—C1—C2—N10.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.932.533.416 (3)159
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H7N3O2
Mr141.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)290
a, b, c (Å)3.9482 (10), 7.9549 (15), 21.655 (4)
β (°) 92.05 (2)
V3)679.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerOxford Xcalibur Eos(Nova) CCD detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
Tmin, Tmax0.926, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
7464, 1262, 910
Rint0.043
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.119, 1.07
No. of reflections1262
No. of parameters93
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1999) and CAMERON (Watkin et al., 1993), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.93002.53003.416 (3)159.00
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the CCD facility setup under the IRHPA–DST program at IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.

References

First citationAbu-Orabi, S. T., Alfah, M. A., Jibril, I., Mari'i, F. M. & Ali, A. A. S. (1989). J. Heterocycl. Chem. 26, 1461–1468.  CrossRef CAS Google Scholar
First citationDehne, H. (1994). Editor. Methoden der Organischen Chemie, 8th Ed., pp. 305–405. Stuttgart: Thieme.  Google Scholar
First citationFan, W.-Q. & Katritzky, A. R. (1996). In Comprehensive Heterocyclic Chemistry II, Vol. 4, edited by A. R. Katritzky, C. W. Rees & E. F. V Scriven, pp. 1–126. Oxford: Pergamon.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlisPro CCD and CrysAlisPro RED, including ABSPACK. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPrabakaran, K., Maiyalagan, T., Hathwar, V. R., Kazak, C. & Khan, F. N. (2009). Acta Cryst. E65, o300.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z., Jian, F., Duan, C., Bai, Z. & You, X. (1998). Acta Cryst. C54, 1927–1929.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds