organic compounds
1-(3,5-Dimethyl-1H-pyrazol-1-yl)-3-phenylisoquinoline
aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, and bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
*Correspondence e-mail: nawaz_f@yahoo.co.in
The molecular conformation of the title compound, C20H17N3, is stabilized by an intramolecular C—H⋯N interaction. The shows intermolecular C—H⋯π interactions. The dihedral angle between the isoquinoline unit and the phenyl ring is 11.42 (1)° whereas the isoquinoline unit and the pendent dimethyl pryrazole unit form a dihedral angle of 50.1 (4)°. Furthermore, the angle between the mean plane of the phenyl ring and the dimethyl pyrazole unit is 47.3 (6)°.
Related literature
For general background to isoquinolines, see: Kametani et al. (1968); Broadhurst et al. (2001); Chao et al. (1999); Choudhury et al. (2002, 2006); Hathwar et al. (2008); Elguero et al. 2002).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809024842/bt2974sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809024842/bt2974Isup2.hkl
The 3-phenylisoquinolinehydrazine, and the 1, 3-diketones namely acetylacetone, were taken in ethanol (1:1 ratio) and refluxed under nitrogen overnight. Then the reaction mass was quenched with water, extracted with ethylacetate, washed, dried, concentrated and purified by
to get titlted compound, (I). Single crystals of the title compound were obtained via recrystalization from a dichloromethane solutionAll the H atoms in (I) were positioned geometrically and refined using a riding model with C—H bond lenghts of 0.93 Å and 0.97 Å for aromatic and for methylene H atoms respectively and Uiso(H) = 1.2Ueq(C) for all carbon bound H atoms.
Data collection: SMART (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2009).C20H17N3 | F(000) = 1264 |
Mr = 299.37 | Dx = 1.205 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 1248 reflections |
a = 18.3294 (14) Å | θ = 2.2–27.2° |
b = 8.3139 (7) Å | µ = 0.07 mm−1 |
c = 21.6532 (17) Å | T = 290 K |
V = 3299.7 (5) Å3 | Block, colorless |
Z = 8 | 0.18 × 0.11 × 0.07 mm |
Bruker SMART CCD area-detector diffractometer | 3065 independent reflections |
Radiation source: fine-focus sealed tube | 2608 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ϕ and ω scans | θmax = 25.5°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −22→20 |
Tmin = 0.949, Tmax = 0.995 | k = −10→10 |
22808 measured reflections | l = −26→24 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.129 | All H-atom parameters refined |
S = 1.14 | w = 1/[σ2(Fo2) + (0.0517P)2 + 0.6765P] where P = (Fo2 + 2Fc2)/3 |
3065 reflections | (Δ/σ)max < 0.001 |
276 parameters | Δρmax = 0.15 e Å−3 |
0 restraints | Δρmin = −0.15 e Å−3 |
C20H17N3 | V = 3299.7 (5) Å3 |
Mr = 299.37 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 18.3294 (14) Å | µ = 0.07 mm−1 |
b = 8.3139 (7) Å | T = 290 K |
c = 21.6532 (17) Å | 0.18 × 0.11 × 0.07 mm |
Bruker SMART CCD area-detector diffractometer | 3065 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2608 reflections with I > 2σ(I) |
Tmin = 0.949, Tmax = 0.995 | Rint = 0.027 |
22808 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.129 | All H-atom parameters refined |
S = 1.14 | Δρmax = 0.15 e Å−3 |
3065 reflections | Δρmin = −0.15 e Å−3 |
276 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.09848 (7) | 0.53396 (16) | 0.26708 (6) | 0.0490 (4) | |
N2 | 0.02198 (7) | 0.52682 (18) | 0.18301 (6) | 0.0538 (4) | |
C1 | 0.08768 (9) | 0.47659 (19) | 0.21175 (7) | 0.0470 (4) | |
C8 | 0.13594 (9) | 0.37101 (19) | 0.18015 (7) | 0.0477 (4) | |
C3 | 0.21303 (10) | 0.3989 (2) | 0.27066 (8) | 0.0525 (4) | |
C9 | 0.20196 (9) | 0.3351 (2) | 0.21115 (8) | 0.0491 (4) | |
C2 | 0.16088 (9) | 0.4924 (2) | 0.29813 (8) | 0.0485 (4) | |
C10 | 0.16626 (9) | 0.5586 (2) | 0.36145 (8) | 0.0533 (4) | |
C4 | 0.25285 (11) | 0.2347 (2) | 0.18064 (9) | 0.0611 (5) | |
C16 | −0.04605 (9) | 0.5383 (2) | 0.20820 (9) | 0.0555 (5) | |
C7 | 0.12169 (11) | 0.3011 (2) | 0.12208 (8) | 0.0597 (5) | |
N3 | 0.02521 (8) | 0.5925 (2) | 0.12480 (7) | 0.0677 (5) | |
C20 | −0.06494 (13) | 0.4719 (3) | 0.26970 (12) | 0.0742 (6) | |
C5 | 0.23812 (12) | 0.1701 (3) | 0.12503 (9) | 0.0705 (6) | |
C11 | 0.22045 (12) | 0.5099 (3) | 0.40250 (9) | 0.0673 (6) | |
C15 | 0.11577 (12) | 0.6709 (3) | 0.38203 (9) | 0.0698 (6) | |
C6 | 0.17167 (12) | 0.2015 (3) | 0.09549 (10) | 0.0699 (6) | |
C12 | 0.22252 (14) | 0.5691 (3) | 0.46184 (10) | 0.0819 (7) | |
C18 | −0.04247 (12) | 0.6423 (3) | 0.11454 (9) | 0.0723 (6) | |
C13 | 0.17137 (16) | 0.6770 (3) | 0.48194 (11) | 0.0876 (8) | |
C17 | −0.08729 (12) | 0.6106 (3) | 0.16449 (10) | 0.0700 (6) | |
C14 | 0.11810 (15) | 0.7294 (3) | 0.44162 (11) | 0.0855 (7) | |
C19 | −0.06113 (15) | 0.7207 (4) | 0.05432 (11) | 0.1147 (10) | |
H19A | −0.0312 | 0.8144 | 0.0487 | 0.172* | |
H19B | −0.1116 | 0.7517 | 0.0545 | 0.172* | |
H19C | −0.0526 | 0.6464 | 0.0212 | 0.172* | |
H3 | 0.2583 (10) | 0.378 (2) | 0.2919 (8) | 0.064 (5)* | |
H7 | 0.0783 (10) | 0.330 (2) | 0.1015 (8) | 0.070 (6)* | |
H4 | 0.2958 (10) | 0.212 (2) | 0.2010 (9) | 0.065 (5)* | |
H11 | 0.2580 (13) | 0.431 (3) | 0.3893 (10) | 0.090 (7)* | |
H5 | 0.2750 (11) | 0.100 (3) | 0.1032 (9) | 0.080 (6)* | |
H15 | 0.0784 (11) | 0.712 (3) | 0.3537 (9) | 0.079 (6)* | |
H20C | −0.1161 (15) | 0.482 (3) | 0.2777 (10) | 0.106 (8)* | |
H17 | −0.1358 (12) | 0.633 (2) | 0.1678 (9) | 0.073 (6)* | |
H20B | −0.0531 (14) | 0.356 (4) | 0.2713 (12) | 0.128 (10)* | |
H14 | 0.0827 (11) | 0.809 (3) | 0.4543 (10) | 0.083 (7)* | |
H12 | 0.2612 (13) | 0.529 (3) | 0.4907 (11) | 0.104 (8)* | |
H20A | −0.0422 (13) | 0.531 (3) | 0.3038 (11) | 0.098 (8)* | |
H6 | 0.1605 (11) | 0.153 (3) | 0.0533 (11) | 0.090 (7)* | |
H13 | 0.1701 (12) | 0.718 (3) | 0.5233 (12) | 0.099 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0454 (8) | 0.0533 (8) | 0.0483 (8) | −0.0005 (6) | −0.0008 (6) | 0.0040 (6) |
N2 | 0.0449 (8) | 0.0652 (9) | 0.0513 (8) | 0.0098 (7) | −0.0043 (6) | −0.0032 (7) |
C1 | 0.0424 (9) | 0.0510 (9) | 0.0474 (9) | 0.0001 (7) | −0.0008 (7) | 0.0054 (7) |
C8 | 0.0459 (9) | 0.0484 (9) | 0.0489 (9) | 0.0017 (7) | 0.0051 (7) | 0.0088 (7) |
C3 | 0.0449 (9) | 0.0588 (10) | 0.0540 (10) | 0.0024 (8) | −0.0011 (8) | 0.0162 (8) |
C9 | 0.0457 (9) | 0.0503 (9) | 0.0512 (10) | 0.0033 (7) | 0.0052 (7) | 0.0168 (7) |
C2 | 0.0468 (9) | 0.0506 (9) | 0.0480 (9) | −0.0056 (7) | −0.0009 (7) | 0.0118 (7) |
C10 | 0.0545 (10) | 0.0578 (10) | 0.0478 (10) | −0.0113 (8) | −0.0001 (8) | 0.0106 (8) |
C4 | 0.0567 (11) | 0.0659 (11) | 0.0607 (12) | 0.0191 (9) | 0.0073 (9) | 0.0213 (9) |
C16 | 0.0437 (9) | 0.0549 (10) | 0.0679 (12) | 0.0022 (8) | −0.0008 (8) | −0.0161 (9) |
C7 | 0.0632 (12) | 0.0634 (11) | 0.0524 (11) | 0.0101 (9) | −0.0005 (9) | 0.0026 (9) |
N3 | 0.0647 (10) | 0.0857 (12) | 0.0528 (9) | 0.0237 (9) | −0.0041 (7) | 0.0024 (8) |
C20 | 0.0531 (13) | 0.0783 (16) | 0.0912 (17) | −0.0012 (11) | 0.0162 (12) | −0.0037 (13) |
C5 | 0.0844 (15) | 0.0722 (13) | 0.0550 (12) | 0.0320 (11) | 0.0164 (11) | 0.0138 (10) |
C11 | 0.0665 (13) | 0.0829 (14) | 0.0526 (12) | −0.0092 (11) | −0.0073 (9) | 0.0133 (10) |
C15 | 0.0766 (14) | 0.0766 (13) | 0.0563 (12) | −0.0002 (11) | −0.0052 (10) | −0.0015 (10) |
C6 | 0.0863 (15) | 0.0710 (13) | 0.0524 (11) | 0.0241 (11) | 0.0046 (10) | 0.0018 (10) |
C12 | 0.0833 (16) | 0.1038 (18) | 0.0586 (13) | −0.0167 (14) | −0.0144 (12) | 0.0141 (13) |
C18 | 0.0707 (13) | 0.0816 (14) | 0.0647 (12) | 0.0302 (11) | −0.0169 (10) | −0.0101 (10) |
C13 | 0.114 (2) | 0.0989 (18) | 0.0499 (13) | −0.0335 (16) | −0.0056 (13) | −0.0015 (12) |
C17 | 0.0485 (11) | 0.0761 (13) | 0.0853 (15) | 0.0197 (10) | −0.0127 (10) | −0.0192 (11) |
C14 | 0.1017 (18) | 0.0896 (16) | 0.0651 (14) | −0.0013 (15) | 0.0035 (13) | −0.0127 (12) |
C19 | 0.117 (2) | 0.149 (3) | 0.0785 (16) | 0.065 (2) | −0.0211 (15) | 0.0087 (16) |
N1—C1 | 1.305 (2) | C20—H20C | 0.96 (3) |
N1—C2 | 1.371 (2) | C20—H20B | 0.99 (3) |
N2—C16 | 1.364 (2) | C20—H20A | 0.98 (3) |
N2—N3 | 1.375 (2) | C5—C6 | 1.400 (3) |
N2—C1 | 1.418 (2) | C5—H5 | 1.01 (2) |
C1—C8 | 1.422 (2) | C11—C12 | 1.376 (3) |
C8—C7 | 1.410 (2) | C11—H11 | 1.00 (2) |
C8—C9 | 1.416 (2) | C15—C14 | 1.380 (3) |
C3—C2 | 1.368 (2) | C15—H15 | 0.98 (2) |
C3—C9 | 1.408 (2) | C6—H6 | 1.02 (2) |
C3—H3 | 0.966 (18) | C12—C13 | 1.369 (4) |
C9—C4 | 1.416 (2) | C12—H12 | 1.00 (3) |
C2—C10 | 1.481 (2) | C18—C17 | 1.383 (3) |
C10—C15 | 1.388 (3) | C18—C19 | 1.498 (3) |
C10—C11 | 1.393 (3) | C13—C14 | 1.380 (3) |
C4—C5 | 1.346 (3) | C13—H13 | 0.96 (2) |
C4—H4 | 0.922 (18) | C17—H17 | 0.91 (2) |
C16—C17 | 1.353 (3) | C14—H14 | 0.97 (2) |
C16—C20 | 1.482 (3) | C19—H19A | 0.9600 |
C7—C6 | 1.362 (3) | C19—H19B | 0.9600 |
C7—H7 | 0.943 (19) | C19—H19C | 0.9600 |
N3—C18 | 1.326 (2) | ||
C1—N1—C2 | 119.00 (14) | H20C—C20—H20A | 103.7 (19) |
C16—N2—N3 | 112.22 (14) | H20B—C20—H20A | 112 (2) |
C16—N2—C1 | 128.39 (15) | C4—C5—C6 | 120.56 (19) |
N3—N2—C1 | 118.85 (13) | C4—C5—H5 | 121.0 (11) |
N1—C1—N2 | 115.09 (14) | C6—C5—H5 | 118.4 (11) |
N1—C1—C8 | 124.98 (15) | C12—C11—C10 | 120.7 (2) |
N2—C1—C8 | 119.92 (15) | C12—C11—H11 | 119.0 (13) |
C7—C8—C9 | 119.62 (16) | C10—C11—H11 | 120.2 (13) |
C7—C8—C1 | 124.66 (16) | C14—C15—C10 | 121.1 (2) |
C9—C8—C1 | 115.72 (15) | C14—C15—H15 | 119.0 (12) |
C2—C3—C9 | 120.75 (16) | C10—C15—H15 | 119.9 (12) |
C2—C3—H3 | 119.8 (11) | C7—C6—C5 | 120.4 (2) |
C9—C3—H3 | 119.4 (11) | C7—C6—H6 | 119.0 (12) |
C3—C9—C4 | 123.67 (16) | C5—C6—H6 | 120.6 (12) |
C3—C9—C8 | 118.52 (15) | C13—C12—C11 | 120.8 (2) |
C4—C9—C8 | 117.80 (17) | C13—C12—H12 | 120.2 (14) |
C3—C2—N1 | 120.85 (16) | C11—C12—H12 | 118.9 (15) |
C3—C2—C10 | 124.57 (15) | N3—C18—C17 | 111.41 (18) |
N1—C2—C10 | 114.57 (15) | N3—C18—C19 | 119.7 (2) |
C15—C10—C11 | 117.79 (19) | C17—C18—C19 | 128.89 (19) |
C15—C10—C2 | 120.19 (16) | C12—C13—C14 | 119.4 (2) |
C11—C10—C2 | 122.00 (18) | C12—C13—H13 | 123.1 (14) |
C5—C4—C9 | 121.39 (19) | C14—C13—H13 | 117.5 (14) |
C5—C4—H4 | 121.1 (12) | C16—C17—C18 | 107.44 (18) |
C9—C4—H4 | 117.5 (12) | C16—C17—H17 | 125.4 (13) |
C17—C16—N2 | 105.19 (18) | C18—C17—H17 | 127.1 (13) |
C17—C16—C20 | 131.6 (2) | C15—C14—C13 | 120.1 (3) |
N2—C16—C20 | 123.14 (17) | C15—C14—H14 | 119.1 (13) |
C6—C7—C8 | 120.20 (19) | C13—C14—H14 | 120.8 (13) |
C6—C7—H7 | 121.4 (12) | C18—C19—H19A | 109.5 |
C8—C7—H7 | 118.3 (12) | C18—C19—H19B | 109.5 |
C18—N3—N2 | 103.72 (16) | H19A—C19—H19B | 109.5 |
C16—C20—H20C | 111.2 (14) | C18—C19—H19C | 109.5 |
C16—C20—H20B | 110.1 (16) | H19A—C19—H19C | 109.5 |
H20C—C20—H20B | 107 (2) | H19B—C19—H19C | 109.5 |
C16—C20—H20A | 112.9 (14) | ||
C2—N1—C1—N2 | −179.60 (14) | N3—N2—C16—C17 | 1.0 (2) |
C2—N1—C1—C8 | 0.5 (2) | C1—N2—C16—C17 | 172.43 (17) |
C16—N2—C1—N1 | −43.2 (2) | N3—N2—C16—C20 | 177.88 (18) |
N3—N2—C1—N1 | 127.74 (16) | C1—N2—C16—C20 | −10.7 (3) |
C16—N2—C1—C8 | 136.70 (18) | C9—C8—C7—C6 | −1.0 (3) |
N3—N2—C1—C8 | −52.4 (2) | C1—C8—C7—C6 | 179.82 (18) |
N1—C1—C8—C7 | 175.60 (16) | C16—N2—N3—C18 | −0.9 (2) |
N2—C1—C8—C7 | −4.3 (2) | C1—N2—N3—C18 | −173.20 (16) |
N1—C1—C8—C9 | −3.6 (2) | C9—C4—C5—C6 | 0.4 (3) |
N2—C1—C8—C9 | 176.55 (14) | C15—C10—C11—C12 | 1.4 (3) |
C2—C3—C9—C4 | −178.55 (16) | C2—C10—C11—C12 | −177.56 (18) |
C2—C3—C9—C8 | 0.6 (2) | C11—C10—C15—C14 | −1.5 (3) |
C7—C8—C9—C3 | −176.34 (15) | C2—C10—C15—C14 | 177.43 (19) |
C1—C8—C9—C3 | 2.9 (2) | C8—C7—C6—C5 | −1.2 (3) |
C7—C8—C9—C4 | 2.8 (2) | C4—C5—C6—C7 | 1.5 (3) |
C1—C8—C9—C4 | −177.96 (15) | C10—C11—C12—C13 | 0.1 (3) |
C9—C3—C2—N1 | −3.8 (2) | N2—N3—C18—C17 | 0.4 (2) |
C9—C3—C2—C10 | 177.19 (15) | N2—N3—C18—C19 | −179.4 (2) |
C1—N1—C2—C3 | 3.3 (2) | C11—C12—C13—C14 | −1.4 (4) |
C1—N1—C2—C10 | −177.61 (14) | N2—C16—C17—C18 | −0.7 (2) |
C3—C2—C10—C15 | 170.61 (17) | C20—C16—C17—C18 | −177.2 (2) |
N1—C2—C10—C15 | −8.4 (2) | N3—C18—C17—C16 | 0.2 (3) |
C3—C2—C10—C11 | −10.5 (3) | C19—C18—C17—C16 | 180.0 (2) |
N1—C2—C10—C11 | 170.48 (16) | C10—C15—C14—C13 | 0.2 (4) |
C3—C9—C4—C5 | 176.59 (18) | C12—C13—C14—C15 | 1.3 (4) |
C8—C9—C4—C5 | −2.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···N3 | 0.94 (2) | 2.452 (17) | 3.001 (2) | 117.4 (13) |
C4—H4···Cg2i | 0.91 (2) | 2.645 (17) | 3.325 (2) | 131.4 (13) |
Symmetry code: (i) −x+1/2, y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C20H17N3 |
Mr | 299.37 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 290 |
a, b, c (Å) | 18.3294 (14), 8.3139 (7), 21.6532 (17) |
V (Å3) | 3299.7 (5) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.18 × 0.11 × 0.07 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.949, 0.995 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22808, 3065, 2608 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.129, 1.14 |
No. of reflections | 3065 |
No. of parameters | 276 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.15, −0.15 |
Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CAMERON (Watkin et al., 1993), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···N3 | 0.94 (2) | 2.452 (17) | 3.001 (2) | 117.4 (13) |
C4—H4···Cg2i | 0.91 (2) | 2.645 (17) | 3.325 (2) | 131.4 (13) |
Symmetry code: (i) −x+1/2, y−1/2, z. |
Acknowledgements
We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA–DST program at IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.
References
Broadhurst, M. D., Michael, J. J., William, H. W. & Daryl, S. (2001). US Patent No. 6 235 787. Google Scholar
Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chao, Q., Deng, L., Shih, H., Leoni, L. M., Genini, D., Carson, D. A. & Cottam, H. B. (1999). J. Med. Chem. 2, 3860–3873. Web of Science CrossRef Google Scholar
Choudhury, A. R. & Guru Row, T. N. (2006). CrystEngComm, 8, 265–274. Web of Science CSD CrossRef CAS Google Scholar
Choudhury, A. R., Urs, U. K., Guru Row, T. N. & Nagarajan, K. (2002). J. Mol. Struct. 605, 71–77. Web of Science CSD CrossRef CAS Google Scholar
Elguero, J., Goya, P., Jagerovic, N. & Silva, A. M. S. (2002). Targets in Heterocyclic Systems, Vol. 6, pp. 52–98. Rome: Italian Society of Chemistry. Google Scholar
Hathwar, V. R., Prabakaran, K., Subashini, R., Manivel, P. & Khan, F. N. (2008). Acta Cryst. E64, o2295. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kametani, T. (1968). The Chemistry of the Isoquinoline Alkaloids. Tokyo: Hirokawa; Amsterdam: Elsevier. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Isoquinolines are an integral part of many naturally occurring fused heterocycles and find applications in synthetic and pharmaceutical chemistry (Kametani et al., 1968). 3-substituted isoquinolines are of potent use in medicine, (Chao et al., 1999) and in general, hydrazine derivatives can be used as medicaments (Broadhurst et al., 2001). Choudhury et al. (2002, 2006) reported crystal structures of substituted isoquinolines while Hathwar et al. (2008) report the crystal structure of an isoquinolinyl diselenide. Similarly, compounds containing the pyrazole motif are being developed in a wide range of therapeutic areas including CNS, metabolic diseases and endocrine functions, and oncology (Elguero et al., 2002). A number of pyrazole-containing compounds have been successfully commercialized, such as the blockbuster drugs Viagra, Celebrex, and Acomplia. In view of the diverse applications of this class of compounds, we report here the crystal structure of isoquinoline pyrazole, namely 1-(2,5-dimethyl-1H-pyrrol-1-yl)-3-phenylisoquinoline.
Although there are no intermolecular C—H···N hydrogen bonds, the molecules are linked by C—H···π interactions.
In the absence of strong hydrogen-bond donors in (I), the crystal packing is controlled by the involvement of weak C—H..pi intermolecular interactions.