organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3,5-Di­methyl-1H-pyrazol-1-yl)-3-phenyl­iso­quinoline

aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, and bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
*Correspondence e-mail: nawaz_f@yahoo.co.in

(Received 17 June 2009; accepted 27 June 2009; online 8 July 2009)

The mol­ecular conformation of the title compound, C20H17N3, is stabilized by an intramolecular C—H⋯N inter­action. The crystal structure shows inter­molecular C—H⋯π inter­actions. The dihedral angle between the isoquinoline unit and the phenyl ring is 11.42 (1)° whereas the isoquinoline unit and the pendent dimethyl pryrazole unit form a dihedral angle of 50.1 (4)°. Furthermore, the angle between the mean plane of the phenyl ring and the dimethyl pyrazole unit is 47.3 (6)°.

Related literature

For general background to isoquinolines, see: Kametani et al. (1968[Kametani, T. (1968). The Chemistry of the Isoquinoline Alkaloids. Tokyo: Hirokawa; Amsterdam: Elsevier.]); Broadhurst et al. (2001[Broadhurst, M. D., Michael, J. J., William, H. W. & Daryl, S. (2001). US Patent No. 6 235 787.]); Chao et al. (1999[Chao, Q., Deng, L., Shih, H., Leoni, L. M., Genini, D., Carson, D. A. & Cottam, H. B. (1999). J. Med. Chem. 2, 3860-3873.]); Choudhury et al. (2002[Choudhury, A. R., Urs, U. K., Guru Row, T. N. & Nagarajan, K. (2002). J. Mol. Struct. 605, 71-77.], 2006[Choudhury, A. R. & Guru Row, T. N. (2006). CrystEngComm, 8, 265-274.]); Hathwar et al. (2008[Hathwar, V. R., Prabakaran, K., Subashini, R., Manivel, P. & Khan, F. N. (2008). Acta Cryst. E64, o2295.]); Elguero et al. 2002[Elguero, J., Goya, P., Jagerovic, N. & Silva, A. M. S. (2002). Targets in Heterocyclic Systems, Vol. 6, pp. 52-98. Rome: Italian Society of Chemistry.]).

[Scheme 1]

Experimental

Crystal data
  • C20H17N3

  • Mr = 299.37

  • Orthorhombic, P b c a

  • a = 18.3294 (14) Å

  • b = 8.3139 (7) Å

  • c = 21.6532 (17) Å

  • V = 3299.7 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 290 K

  • 0.18 × 0.11 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.949, Tmax = 0.995

  • 22808 measured reflections

  • 3065 independent reflections

  • 2608 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.129

  • S = 1.14

  • 3065 reflections

  • 276 parameters

  • All H-atom parameters refined

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯N3 0.94 (2) 2.452 (17) 3.001 (2) 117.4 (13)
C4—H4⋯Cg2i 0.91 (2) 2.645 (17) 3.325 (2) 131.4 (13)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]. Cg2 is the centroid of the N1,C1–C3,C8,C9 ring.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CAMERON (Watkin et al., 1993[Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Isoquinolines are an integral part of many naturally occurring fused heterocycles and find applications in synthetic and pharmaceutical chemistry (Kametani et al., 1968). 3-substituted isoquinolines are of potent use in medicine, (Chao et al., 1999) and in general, hydrazine derivatives can be used as medicaments (Broadhurst et al., 2001). Choudhury et al. (2002, 2006) reported crystal structures of substituted isoquinolines while Hathwar et al. (2008) report the crystal structure of an isoquinolinyl diselenide. Similarly, compounds containing the pyrazole motif are being developed in a wide range of therapeutic areas including CNS, metabolic diseases and endocrine functions, and oncology (Elguero et al., 2002). A number of pyrazole-containing compounds have been successfully commercialized, such as the blockbuster drugs Viagra, Celebrex, and Acomplia. In view of the diverse applications of this class of compounds, we report here the crystal structure of isoquinoline pyrazole, namely 1-(2,5-dimethyl-1H-pyrrol-1-yl)-3-phenylisoquinoline.

Although there are no intermolecular C—H···N hydrogen bonds, the molecules are linked by C—H···π interactions.

In the absence of strong hydrogen-bond donors in (I), the crystal packing is controlled by the involvement of weak C—H..pi intermolecular interactions.

Related literature top

For general background to hydrazine compounds, see: Kametani et al. (1968); Broadhurst et al. (2001); Chao et al. (1999); Choudhury et al. (2002, 2006); Hathwar et al. (2008); Elguero et al. 2002).

Experimental top

The 3-phenylisoquinolinehydrazine, and the 1, 3-diketones namely acetylacetone, were taken in ethanol (1:1 ratio) and refluxed under nitrogen overnight. Then the reaction mass was quenched with water, extracted with ethylacetate, washed, dried, concentrated and purified by column chromatography to get titlted compound, (I). Single crystals of the title compound were obtained via recrystalization from a dichloromethane solution

Refinement top

All the H atoms in (I) were positioned geometrically and refined using a riding model with C—H bond lenghts of 0.93 Å and 0.97 Å for aromatic and for methylene H atoms respectively and Uiso(H) = 1.2Ueq(C) for all carbon bound H atoms.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the asymmetric unit of (I) with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing excerpt from the crystal with dotted lines indicating intermolecular C—H···π hydrogen bonds. H atoms not involved in the interactions are omitted for clarity.
1-(3,5-Dimethyl-1H</>-pyrazol-1-yl)-3-phenylisoquinoline top
Crystal data top
C20H17N3F(000) = 1264
Mr = 299.37Dx = 1.205 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1248 reflections
a = 18.3294 (14) Åθ = 2.2–27.2°
b = 8.3139 (7) ŵ = 0.07 mm1
c = 21.6532 (17) ÅT = 290 K
V = 3299.7 (5) Å3Block, colorless
Z = 80.18 × 0.11 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3065 independent reflections
Radiation source: fine-focus sealed tube2608 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2220
Tmin = 0.949, Tmax = 0.995k = 1010
22808 measured reflectionsl = 2624
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129All H-atom parameters refined
S = 1.14 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.6765P]
where P = (Fo2 + 2Fc2)/3
3065 reflections(Δ/σ)max < 0.001
276 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C20H17N3V = 3299.7 (5) Å3
Mr = 299.37Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 18.3294 (14) ŵ = 0.07 mm1
b = 8.3139 (7) ÅT = 290 K
c = 21.6532 (17) Å0.18 × 0.11 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3065 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2608 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.995Rint = 0.027
22808 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.129All H-atom parameters refined
S = 1.14Δρmax = 0.15 e Å3
3065 reflectionsΔρmin = 0.15 e Å3
276 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.09848 (7)0.53396 (16)0.26708 (6)0.0490 (4)
N20.02198 (7)0.52682 (18)0.18301 (6)0.0538 (4)
C10.08768 (9)0.47659 (19)0.21175 (7)0.0470 (4)
C80.13594 (9)0.37101 (19)0.18015 (7)0.0477 (4)
C30.21303 (10)0.3989 (2)0.27066 (8)0.0525 (4)
C90.20196 (9)0.3351 (2)0.21115 (8)0.0491 (4)
C20.16088 (9)0.4924 (2)0.29813 (8)0.0485 (4)
C100.16626 (9)0.5586 (2)0.36145 (8)0.0533 (4)
C40.25285 (11)0.2347 (2)0.18064 (9)0.0611 (5)
C160.04605 (9)0.5383 (2)0.20820 (9)0.0555 (5)
C70.12169 (11)0.3011 (2)0.12208 (8)0.0597 (5)
N30.02521 (8)0.5925 (2)0.12480 (7)0.0677 (5)
C200.06494 (13)0.4719 (3)0.26970 (12)0.0742 (6)
C50.23812 (12)0.1701 (3)0.12503 (9)0.0705 (6)
C110.22045 (12)0.5099 (3)0.40250 (9)0.0673 (6)
C150.11577 (12)0.6709 (3)0.38203 (9)0.0698 (6)
C60.17167 (12)0.2015 (3)0.09549 (10)0.0699 (6)
C120.22252 (14)0.5691 (3)0.46184 (10)0.0819 (7)
C180.04247 (12)0.6423 (3)0.11454 (9)0.0723 (6)
C130.17137 (16)0.6770 (3)0.48194 (11)0.0876 (8)
C170.08729 (12)0.6106 (3)0.16449 (10)0.0700 (6)
C140.11810 (15)0.7294 (3)0.44162 (11)0.0855 (7)
C190.06113 (15)0.7207 (4)0.05432 (11)0.1147 (10)
H19A0.03120.81440.04870.172*
H19B0.11160.75170.05450.172*
H19C0.05260.64640.02120.172*
H30.2583 (10)0.378 (2)0.2919 (8)0.064 (5)*
H70.0783 (10)0.330 (2)0.1015 (8)0.070 (6)*
H40.2958 (10)0.212 (2)0.2010 (9)0.065 (5)*
H110.2580 (13)0.431 (3)0.3893 (10)0.090 (7)*
H50.2750 (11)0.100 (3)0.1032 (9)0.080 (6)*
H150.0784 (11)0.712 (3)0.3537 (9)0.079 (6)*
H20C0.1161 (15)0.482 (3)0.2777 (10)0.106 (8)*
H170.1358 (12)0.633 (2)0.1678 (9)0.073 (6)*
H20B0.0531 (14)0.356 (4)0.2713 (12)0.128 (10)*
H140.0827 (11)0.809 (3)0.4543 (10)0.083 (7)*
H120.2612 (13)0.529 (3)0.4907 (11)0.104 (8)*
H20A0.0422 (13)0.531 (3)0.3038 (11)0.098 (8)*
H60.1605 (11)0.153 (3)0.0533 (11)0.090 (7)*
H130.1701 (12)0.718 (3)0.5233 (12)0.099 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0454 (8)0.0533 (8)0.0483 (8)0.0005 (6)0.0008 (6)0.0040 (6)
N20.0449 (8)0.0652 (9)0.0513 (8)0.0098 (7)0.0043 (6)0.0032 (7)
C10.0424 (9)0.0510 (9)0.0474 (9)0.0001 (7)0.0008 (7)0.0054 (7)
C80.0459 (9)0.0484 (9)0.0489 (9)0.0017 (7)0.0051 (7)0.0088 (7)
C30.0449 (9)0.0588 (10)0.0540 (10)0.0024 (8)0.0011 (8)0.0162 (8)
C90.0457 (9)0.0503 (9)0.0512 (10)0.0033 (7)0.0052 (7)0.0168 (7)
C20.0468 (9)0.0506 (9)0.0480 (9)0.0056 (7)0.0009 (7)0.0118 (7)
C100.0545 (10)0.0578 (10)0.0478 (10)0.0113 (8)0.0001 (8)0.0106 (8)
C40.0567 (11)0.0659 (11)0.0607 (12)0.0191 (9)0.0073 (9)0.0213 (9)
C160.0437 (9)0.0549 (10)0.0679 (12)0.0022 (8)0.0008 (8)0.0161 (9)
C70.0632 (12)0.0634 (11)0.0524 (11)0.0101 (9)0.0005 (9)0.0026 (9)
N30.0647 (10)0.0857 (12)0.0528 (9)0.0237 (9)0.0041 (7)0.0024 (8)
C200.0531 (13)0.0783 (16)0.0912 (17)0.0012 (11)0.0162 (12)0.0037 (13)
C50.0844 (15)0.0722 (13)0.0550 (12)0.0320 (11)0.0164 (11)0.0138 (10)
C110.0665 (13)0.0829 (14)0.0526 (12)0.0092 (11)0.0073 (9)0.0133 (10)
C150.0766 (14)0.0766 (13)0.0563 (12)0.0002 (11)0.0052 (10)0.0015 (10)
C60.0863 (15)0.0710 (13)0.0524 (11)0.0241 (11)0.0046 (10)0.0018 (10)
C120.0833 (16)0.1038 (18)0.0586 (13)0.0167 (14)0.0144 (12)0.0141 (13)
C180.0707 (13)0.0816 (14)0.0647 (12)0.0302 (11)0.0169 (10)0.0101 (10)
C130.114 (2)0.0989 (18)0.0499 (13)0.0335 (16)0.0056 (13)0.0015 (12)
C170.0485 (11)0.0761 (13)0.0853 (15)0.0197 (10)0.0127 (10)0.0192 (11)
C140.1017 (18)0.0896 (16)0.0651 (14)0.0013 (15)0.0035 (13)0.0127 (12)
C190.117 (2)0.149 (3)0.0785 (16)0.065 (2)0.0211 (15)0.0087 (16)
Geometric parameters (Å, º) top
N1—C11.305 (2)C20—H20C0.96 (3)
N1—C21.371 (2)C20—H20B0.99 (3)
N2—C161.364 (2)C20—H20A0.98 (3)
N2—N31.375 (2)C5—C61.400 (3)
N2—C11.418 (2)C5—H51.01 (2)
C1—C81.422 (2)C11—C121.376 (3)
C8—C71.410 (2)C11—H111.00 (2)
C8—C91.416 (2)C15—C141.380 (3)
C3—C21.368 (2)C15—H150.98 (2)
C3—C91.408 (2)C6—H61.02 (2)
C3—H30.966 (18)C12—C131.369 (4)
C9—C41.416 (2)C12—H121.00 (3)
C2—C101.481 (2)C18—C171.383 (3)
C10—C151.388 (3)C18—C191.498 (3)
C10—C111.393 (3)C13—C141.380 (3)
C4—C51.346 (3)C13—H130.96 (2)
C4—H40.922 (18)C17—H170.91 (2)
C16—C171.353 (3)C14—H140.97 (2)
C16—C201.482 (3)C19—H19A0.9600
C7—C61.362 (3)C19—H19B0.9600
C7—H70.943 (19)C19—H19C0.9600
N3—C181.326 (2)
C1—N1—C2119.00 (14)H20C—C20—H20A103.7 (19)
C16—N2—N3112.22 (14)H20B—C20—H20A112 (2)
C16—N2—C1128.39 (15)C4—C5—C6120.56 (19)
N3—N2—C1118.85 (13)C4—C5—H5121.0 (11)
N1—C1—N2115.09 (14)C6—C5—H5118.4 (11)
N1—C1—C8124.98 (15)C12—C11—C10120.7 (2)
N2—C1—C8119.92 (15)C12—C11—H11119.0 (13)
C7—C8—C9119.62 (16)C10—C11—H11120.2 (13)
C7—C8—C1124.66 (16)C14—C15—C10121.1 (2)
C9—C8—C1115.72 (15)C14—C15—H15119.0 (12)
C2—C3—C9120.75 (16)C10—C15—H15119.9 (12)
C2—C3—H3119.8 (11)C7—C6—C5120.4 (2)
C9—C3—H3119.4 (11)C7—C6—H6119.0 (12)
C3—C9—C4123.67 (16)C5—C6—H6120.6 (12)
C3—C9—C8118.52 (15)C13—C12—C11120.8 (2)
C4—C9—C8117.80 (17)C13—C12—H12120.2 (14)
C3—C2—N1120.85 (16)C11—C12—H12118.9 (15)
C3—C2—C10124.57 (15)N3—C18—C17111.41 (18)
N1—C2—C10114.57 (15)N3—C18—C19119.7 (2)
C15—C10—C11117.79 (19)C17—C18—C19128.89 (19)
C15—C10—C2120.19 (16)C12—C13—C14119.4 (2)
C11—C10—C2122.00 (18)C12—C13—H13123.1 (14)
C5—C4—C9121.39 (19)C14—C13—H13117.5 (14)
C5—C4—H4121.1 (12)C16—C17—C18107.44 (18)
C9—C4—H4117.5 (12)C16—C17—H17125.4 (13)
C17—C16—N2105.19 (18)C18—C17—H17127.1 (13)
C17—C16—C20131.6 (2)C15—C14—C13120.1 (3)
N2—C16—C20123.14 (17)C15—C14—H14119.1 (13)
C6—C7—C8120.20 (19)C13—C14—H14120.8 (13)
C6—C7—H7121.4 (12)C18—C19—H19A109.5
C8—C7—H7118.3 (12)C18—C19—H19B109.5
C18—N3—N2103.72 (16)H19A—C19—H19B109.5
C16—C20—H20C111.2 (14)C18—C19—H19C109.5
C16—C20—H20B110.1 (16)H19A—C19—H19C109.5
H20C—C20—H20B107 (2)H19B—C19—H19C109.5
C16—C20—H20A112.9 (14)
C2—N1—C1—N2179.60 (14)N3—N2—C16—C171.0 (2)
C2—N1—C1—C80.5 (2)C1—N2—C16—C17172.43 (17)
C16—N2—C1—N143.2 (2)N3—N2—C16—C20177.88 (18)
N3—N2—C1—N1127.74 (16)C1—N2—C16—C2010.7 (3)
C16—N2—C1—C8136.70 (18)C9—C8—C7—C61.0 (3)
N3—N2—C1—C852.4 (2)C1—C8—C7—C6179.82 (18)
N1—C1—C8—C7175.60 (16)C16—N2—N3—C180.9 (2)
N2—C1—C8—C74.3 (2)C1—N2—N3—C18173.20 (16)
N1—C1—C8—C93.6 (2)C9—C4—C5—C60.4 (3)
N2—C1—C8—C9176.55 (14)C15—C10—C11—C121.4 (3)
C2—C3—C9—C4178.55 (16)C2—C10—C11—C12177.56 (18)
C2—C3—C9—C80.6 (2)C11—C10—C15—C141.5 (3)
C7—C8—C9—C3176.34 (15)C2—C10—C15—C14177.43 (19)
C1—C8—C9—C32.9 (2)C8—C7—C6—C51.2 (3)
C7—C8—C9—C42.8 (2)C4—C5—C6—C71.5 (3)
C1—C8—C9—C4177.96 (15)C10—C11—C12—C130.1 (3)
C9—C3—C2—N13.8 (2)N2—N3—C18—C170.4 (2)
C9—C3—C2—C10177.19 (15)N2—N3—C18—C19179.4 (2)
C1—N1—C2—C33.3 (2)C11—C12—C13—C141.4 (4)
C1—N1—C2—C10177.61 (14)N2—C16—C17—C180.7 (2)
C3—C2—C10—C15170.61 (17)C20—C16—C17—C18177.2 (2)
N1—C2—C10—C158.4 (2)N3—C18—C17—C160.2 (3)
C3—C2—C10—C1110.5 (3)C19—C18—C17—C16180.0 (2)
N1—C2—C10—C11170.48 (16)C10—C15—C14—C130.2 (4)
C3—C9—C4—C5176.59 (18)C12—C13—C14—C151.3 (4)
C8—C9—C4—C52.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···N30.94 (2)2.452 (17)3.001 (2)117.4 (13)
C4—H4···Cg2i0.91 (2)2.645 (17)3.325 (2)131.4 (13)
Symmetry code: (i) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC20H17N3
Mr299.37
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)290
a, b, c (Å)18.3294 (14), 8.3139 (7), 21.6532 (17)
V3)3299.7 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.18 × 0.11 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.949, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
22808, 3065, 2608
Rint0.027
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.129, 1.14
No. of reflections3065
No. of parameters276
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.15, 0.15

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CAMERON (Watkin et al., 1993), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···N30.94 (2)2.452 (17)3.001 (2)117.4 (13)
C4—H4···Cg2i0.91 (2)2.645 (17)3.325 (2)131.4 (13)
Symmetry code: (i) x+1/2, y1/2, z.
 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA–DST program at IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.

References

First citationBroadhurst, M. D., Michael, J. J., William, H. W. & Daryl, S. (2001). US Patent No. 6 235 787.  Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChao, Q., Deng, L., Shih, H., Leoni, L. M., Genini, D., Carson, D. A. & Cottam, H. B. (1999). J. Med. Chem. 2, 3860–3873.  Web of Science CrossRef Google Scholar
First citationChoudhury, A. R. & Guru Row, T. N. (2006). CrystEngComm, 8, 265–274.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoudhury, A. R., Urs, U. K., Guru Row, T. N. & Nagarajan, K. (2002). J. Mol. Struct. 605, 71–77.  Web of Science CSD CrossRef CAS Google Scholar
First citationElguero, J., Goya, P., Jagerovic, N. & Silva, A. M. S. (2002). Targets in Heterocyclic Systems, Vol. 6, pp. 52–98. Rome: Italian Society of Chemistry.  Google Scholar
First citationHathwar, V. R., Prabakaran, K., Subashini, R., Manivel, P. & Khan, F. N. (2008). Acta Cryst. E64, o2295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKametani, T. (1968). The Chemistry of the Isoquinoline Alkaloids. Tokyo: Hirokawa; Amsterdam: Elsevier.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds