organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1729-o1730

2,3-Di­amino­pyridinium 3-amino­benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 22 June 2009; accepted 24 June 2009; online 1 July 2009)

In the title salt, C5H8N3+·C7H6NO2, the pyridine N atom of the 2,3-diamino­pyridine mol­ecule is protonated. The proton­ated N atom and one of the two N atoms of the 2-amino groups are hydrogen bonded to the 3-amino­benzoate anion through a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. The carboxyl­ate mean plane of the 3-amino­benzoate anion is twisted by 8.81 (7)° from the attached ring. The crystal structure is further stabilized by ππ inter­actions [centroid–centroid distance 3.6827 (7) Å].

Related literature

For substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). For hydrogen bonding in pyridine and its substituted derivatives, see: Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding: A Theoretical Perspective. Oxford University Press.]). For related structures, see: Fun & Balasubramani (2009[Fun, H.-K. & Balasubramani, K. (2009). Acta Cryst. E65, o1496-o1497.]); Balasubramani & Fun (2009a[Balasubramani, K. & Fun, H.-K. (2009a). Acta Cryst. E65, o1511-o1512.],b[Balasubramani, K. & Fun, H.-K. (2009b). Acta Cryst. E65, o1519.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C5H8N3+·C7H6NO2

  • Mr = 246.27

  • Monoclinic, P 21 /c

  • a = 9.9119 (2) Å

  • b = 10.1751 (2) Å

  • c = 12.4060 (2) Å

  • β = 106.811 (1)°

  • V = 1197.73 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.46 × 0.14 × 0.06 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.994

  • 19514 measured reflections

  • 4434 independent reflections

  • 2965 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.142

  • S = 1.06

  • 4434 reflections

  • 219 parameters

  • All H-atom parameters refined

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N2⋯O2i 0.91 (2) 2.02 (2) 2.9293 (14) 177.1 (17)
N3—H1N3⋯O2i 0.92 (2) 2.08 (2) 2.9854 (16) 167.3 (18)
N3—H2N3⋯O1ii 0.96 (2) 2.04 (2) 2.9544 (14) 158.1 (16)
N4—H1N4⋯O1iii 0.95 (2) 2.06 (2) 2.9794 (15) 162.3 (18)
N1—H1N1⋯O2 0.99 (2) 1.77 (2) 2.7510 (13) 167.1 (15)
N2—H1N2⋯O1 0.94 (2) 1.87 (2) 2.8086 (14) 175.7 (16)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). Pyridine and its substituted derivatives are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The crystal structures of 2,3-diaminopyridinium 4-hydroxybenzoate (Fun & Balasubramani, 2009), 2,3-diaminopyridinium 4-nitrobenzoate (Balasubramani & Fun, 2009a) and 2,3-diaminopyridinium benzoate (Balasubramani & Fun, 2009b) have been reported by us recently. In the hope to study some interesting hydrogen-bonding interactions, the title compound (I) was synthesized. Its molecular and crystal structure is presented here.

The asymmetric unit of (I) (Fig 1), contains a protonated 2,3-diaminopyridinium cation and an 3-aminobenzoate anion. The bond lengths (Allen et al., 1987) and angles are normal. In the 2,3-diaminopyridinium cation, the protonated N1 atom has lead to a slight increase in the C8—N1—C12 angle to 123.37 (11)°. The carboxylate group is twisted slightly from the ring with the dihedral angle between C1—C6 and O1/O2/C7/C6 planes being 8.81 (7)°. The 2,3-diaminopyridinium cation is planar, with a maximum deviation of 0.0126 (14) Å for atom C9.

In the crystal packing (Fig. 2), the protonated N1 atom and a nitrogen atom of the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O2 and O1) via a pair of N—H···O hydrogen bonds forming a ring motif R22(8) (Bernstein et al., 1995). The 2-amino groups (N2 and N3) are involved in N—H···O hydrogen bonding interactions to form a R12(7) ring motif. The symmetry-related 3-aminobenzoate molecules are linked through N—H···O hydrogen-bonding to form a R22(14) ring motif (Table 1 and Fig. 2). The cystal structure is further stabilized by a π-π stacking interaction between the aminopyridine rings (C8—C12/N1) with centroid-to-centroid distance of 3.6827 (7) Å, perpendicular interplanar distance of 3.3536 (5) Å.

Related literature top

For substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For hydrogen bonding in pPyridine and its substituted derivatives Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For related structures, see: Fun & Balasubramani (2009); Balasubramani & Fun (2009a,b). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Hot methanol solutions (20 ml) of 2,3-diaminopyridine (27 mg, Aldrich) and 3-aminobenzoic acid (35 mg, Merck) were mixed and warmed over a heating magnetic stirrer for 5 minutes. The resulting solution was allowed to cool slowly at room temperature. Crystals of (I) appeared from the mother liquor after a few days.

Refinement top

All the H atoms were located from the difference Fourier map and allowed to refine freely.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme. Dashed lines indicate the hydrogen bonding.
[Figure 2] Fig. 2. Part of the crystal packing of (I). Dashed lines indicate the hydrogen bonding.
2,3-Diaminopyridinium 3-aminobenzoate top
Crystal data top
C5H8N3+·C7H6NO2F(000) = 520
Mr = 246.27Dx = 1.366 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3436 reflections
a = 9.9119 (2) Åθ = 2.9–32.6°
b = 10.1751 (2) ŵ = 0.10 mm1
c = 12.4060 (2) ÅT = 100 K
β = 106.811 (1)°Plate, brown
V = 1197.73 (4) Å30.46 × 0.14 × 0.06 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4434 independent reflections
Radiation source: fine-focus sealed tube2965 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 32.8°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1415
Tmin = 0.957, Tmax = 0.994k = 1215
19514 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.0752P]
where P = (Fo2 + 2Fc2)/3
4434 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C5H8N3+·C7H6NO2V = 1197.73 (4) Å3
Mr = 246.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.9119 (2) ŵ = 0.10 mm1
b = 10.1751 (2) ÅT = 100 K
c = 12.4060 (2) Å0.46 × 0.14 × 0.06 mm
β = 106.811 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4434 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2965 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.994Rint = 0.046
19514 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.142All H-atom parameters refined
S = 1.06Δρmax = 0.33 e Å3
4434 reflectionsΔρmin = 0.23 e Å3
219 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.45804 (11)0.32315 (11)0.46427 (8)0.0219 (2)
N20.56864 (12)0.28026 (12)0.32806 (9)0.0252 (2)
N30.36894 (13)0.43692 (12)0.17546 (9)0.0275 (2)
C80.46690 (12)0.34222 (12)0.35929 (10)0.0199 (2)
C90.36669 (13)0.42721 (12)0.28567 (10)0.0223 (2)
C100.26897 (14)0.48893 (14)0.32782 (11)0.0276 (3)
C110.26420 (14)0.46612 (14)0.43889 (12)0.0286 (3)
C120.35938 (13)0.38245 (13)0.50509 (11)0.0252 (3)
H100.1974 (16)0.5508 (16)0.2749 (13)0.032 (4)*
H110.1881 (16)0.5151 (16)0.4685 (13)0.033 (4)*
H120.3671 (16)0.3657 (15)0.5851 (13)0.028 (4)*
H1N10.5279 (18)0.2611 (17)0.5122 (14)0.040 (5)*
H1N20.6338 (18)0.2303 (17)0.3822 (15)0.040 (5)*
H2N20.5864 (19)0.2985 (18)0.2620 (16)0.045 (5)*
H1N30.453 (2)0.4228 (19)0.1593 (16)0.056 (6)*
H2N30.311 (2)0.504 (2)0.1305 (16)0.053 (5)*
C40.96875 (12)0.19646 (13)0.66376 (10)0.0226 (2)
C50.89408 (12)0.08847 (12)0.60585 (10)0.0206 (2)
H10.7131 (18)0.0025 (17)0.7829 (14)0.042 (5)*
H20.8458 (18)0.1824 (17)0.8828 (15)0.039 (4)*
H31.0060 (16)0.3052 (16)0.8108 (13)0.032 (4)*
H50.9082 (15)0.0651 (14)0.5321 (12)0.023 (4)*
C60.80059 (12)0.01887 (12)0.64902 (9)0.0191 (2)
C70.72259 (12)0.09741 (12)0.58352 (9)0.0198 (2)
O10.75796 (9)0.13487 (9)0.49856 (7)0.0232 (2)
O20.62586 (10)0.15115 (9)0.61617 (7)0.0259 (2)
N41.05563 (14)0.26916 (14)0.61717 (11)0.0347 (3)
C10.78080 (13)0.05510 (13)0.75193 (10)0.0231 (2)
C20.85824 (14)0.16013 (13)0.81132 (11)0.0261 (3)
C30.94998 (13)0.23049 (13)0.76778 (11)0.0249 (3)
H1N41.097 (2)0.224 (2)0.5680 (17)0.057 (6)*
H2N41.109 (2)0.329 (2)0.6604 (17)0.053 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0232 (5)0.0234 (5)0.0198 (5)0.0005 (4)0.0075 (4)0.0013 (4)
N20.0283 (5)0.0289 (6)0.0206 (5)0.0065 (4)0.0105 (4)0.0062 (4)
N30.0298 (6)0.0314 (6)0.0196 (5)0.0039 (5)0.0045 (4)0.0048 (4)
C80.0208 (5)0.0193 (5)0.0196 (5)0.0018 (4)0.0059 (4)0.0005 (4)
C90.0225 (5)0.0220 (6)0.0204 (5)0.0007 (5)0.0031 (4)0.0010 (4)
C100.0238 (6)0.0285 (7)0.0283 (6)0.0038 (5)0.0041 (5)0.0003 (5)
C110.0252 (6)0.0307 (7)0.0310 (7)0.0016 (5)0.0097 (5)0.0041 (5)
C120.0262 (6)0.0280 (7)0.0234 (6)0.0009 (5)0.0104 (5)0.0029 (5)
C40.0201 (5)0.0230 (6)0.0257 (6)0.0015 (5)0.0083 (4)0.0014 (5)
C50.0209 (5)0.0223 (6)0.0187 (5)0.0014 (4)0.0057 (4)0.0012 (4)
C60.0200 (5)0.0196 (5)0.0171 (5)0.0019 (4)0.0043 (4)0.0002 (4)
C70.0231 (5)0.0207 (6)0.0151 (5)0.0020 (4)0.0046 (4)0.0015 (4)
O10.0251 (4)0.0266 (5)0.0183 (4)0.0010 (4)0.0072 (3)0.0034 (3)
O20.0318 (5)0.0272 (5)0.0213 (4)0.0078 (4)0.0116 (4)0.0033 (3)
N40.0351 (6)0.0352 (7)0.0405 (7)0.0139 (5)0.0216 (5)0.0126 (6)
C10.0257 (6)0.0234 (6)0.0217 (6)0.0010 (5)0.0096 (5)0.0016 (5)
C20.0302 (6)0.0279 (7)0.0223 (6)0.0012 (5)0.0107 (5)0.0061 (5)
C30.0235 (6)0.0243 (6)0.0273 (6)0.0016 (5)0.0078 (5)0.0067 (5)
Geometric parameters (Å, º) top
N1—C81.3445 (15)C4—N41.3822 (17)
N1—C121.3650 (16)C4—C31.3995 (17)
N1—H1N10.997 (18)C4—C51.4013 (17)
N2—C81.3382 (16)C5—C61.3907 (16)
N2—H1N20.936 (18)C5—H50.994 (14)
N2—H2N20.906 (19)C6—C11.3961 (16)
N3—C91.3775 (16)C6—C71.5147 (17)
N3—H1N30.92 (2)C7—O11.2621 (14)
N3—H2N30.96 (2)C7—O21.2677 (14)
C8—C91.4296 (16)N4—H1N40.95 (2)
C9—C101.3781 (18)N4—H2N40.88 (2)
C10—C111.4115 (19)C1—C21.3954 (18)
C10—H101.030 (16)C1—H11.017 (17)
C11—C121.3569 (19)C2—C31.3839 (18)
C11—H111.054 (16)C2—H20.957 (17)
C12—H120.988 (15)C3—H31.000 (16)
C8—N1—C12123.37 (11)N4—C4—C3121.21 (12)
C8—N1—H1N1116.1 (10)N4—C4—C5120.39 (11)
C12—N1—H1N1120.5 (10)C3—C4—C5118.38 (11)
C8—N2—H1N2118.0 (10)C6—C5—C4120.92 (11)
C8—N2—H2N2121.7 (12)C6—C5—H5121.3 (8)
H1N2—N2—H2N2119.1 (15)C4—C5—H5117.7 (8)
C9—N3—H1N3118.6 (12)C5—C6—C1120.21 (11)
C9—N3—H2N3116.7 (11)C5—C6—C7118.99 (10)
H1N3—N3—H2N3114.2 (16)C1—C6—C7120.79 (11)
N2—C8—N1118.57 (11)O1—C7—O2123.71 (11)
N2—C8—C9122.86 (11)O1—C7—C6117.51 (10)
N1—C8—C9118.57 (11)O2—C7—C6118.77 (10)
N3—C9—C10123.98 (12)C4—N4—H1N4116.5 (12)
N3—C9—C8118.02 (11)C4—N4—H2N4117.0 (12)
C10—C9—C8117.90 (11)H1N4—N4—H2N4115.6 (17)
C9—C10—C11121.41 (12)C2—C1—C6118.93 (12)
C9—C10—H10117.8 (8)C2—C1—H1121.7 (10)
C11—C10—H10120.8 (8)C6—C1—H1119.3 (10)
C12—C11—C10118.71 (12)C3—C2—C1120.88 (12)
C12—C11—H11121.8 (9)C3—C2—H2121.0 (10)
C10—C11—H11119.4 (9)C1—C2—H2118.1 (10)
C11—C12—N1120.00 (12)C2—C3—C4120.64 (12)
C11—C12—H12123.7 (9)C2—C3—H3120.7 (9)
N1—C12—H12116.1 (9)C4—C3—H3118.6 (9)
C12—N1—C8—N2179.31 (11)C4—C5—C6—C10.65 (18)
C12—N1—C8—C91.04 (17)C4—C5—C6—C7179.83 (11)
N2—C8—C9—N35.26 (18)C5—C6—C7—O17.75 (16)
N1—C8—C9—N3174.37 (11)C1—C6—C7—O1171.43 (11)
N2—C8—C9—C10178.13 (12)C5—C6—C7—O2171.97 (11)
N1—C8—C9—C102.23 (17)C1—C6—C7—O28.85 (17)
N3—C9—C10—C11174.31 (12)C5—C6—C1—C21.28 (18)
C8—C9—C10—C112.08 (19)C7—C6—C1—C2177.89 (11)
C9—C10—C11—C120.7 (2)C6—C1—C2—C32.1 (2)
C10—C11—C12—N10.6 (2)C1—C2—C3—C41.0 (2)
C8—N1—C12—C110.41 (19)N4—C4—C3—C2177.33 (13)
N4—C4—C5—C6176.53 (12)C5—C4—C3—C20.93 (19)
C3—C4—C5—C61.75 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N2···O2i0.91 (2)2.02 (2)2.9293 (14)177.1 (17)
N3—H1N3···O2i0.92 (2)2.08 (2)2.9854 (16)167.3 (18)
N3—H2N3···O1ii0.96 (2)2.04 (2)2.9544 (14)158.1 (16)
N4—H1N4···O1iii0.95 (2)2.06 (2)2.9794 (15)162.3 (18)
N1—H1N1···O20.99 (2)1.77 (2)2.7510 (13)167.1 (15)
N2—H1N2···O10.94 (2)1.87 (2)2.8086 (14)175.7 (16)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC5H8N3+·C7H6NO2
Mr246.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.9119 (2), 10.1751 (2), 12.4060 (2)
β (°) 106.811 (1)
V3)1197.73 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.46 × 0.14 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.957, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
19514, 4434, 2965
Rint0.046
(sin θ/λ)max1)0.763
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.142, 1.06
No. of reflections4434
No. of parameters219
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.33, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N2···O2i0.91 (2)2.02 (2)2.9293 (14)177.1 (17)
N3—H1N3···O2i0.92 (2)2.08 (2)2.9854 (16)167.3 (18)
N3—H2N3···O1ii0.96 (2)2.04 (2)2.9544 (14)158.1 (16)
N4—H1N4···O1iii0.95 (2)2.06 (2)2.9794 (15)162.3 (18)
N1—H1N1···O20.99 (2)1.77 (2)2.7510 (13)167.1 (15)
N2—H1N2···O10.94 (2)1.87 (2)2.8086 (14)175.7 (16)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+2, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

KBS and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. KBS thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBalasubramani, K. & Fun, H.-K. (2009a). Acta Cryst. E65, o1511–o1512.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBalasubramani, K. & Fun, H.-K. (2009b). Acta Cryst. E65, o1519.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K. & Balasubramani, K. (2009). Acta Cryst. E65, o1496–o1497.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding: A Theoretical Perspective. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1729-o1730
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds