metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m930-m931

Bis(creatininium) tetra­chlorido­cadmate(II)

aUniversité 20 Aout 1955, Skikda, Algeria, bUniversité Mentouri, Constantine, Algeria, and cUMR 6226 CNRS Sciences Chimiques de Rennes, Université Rennes 1, Rennes, France
*Correspondence e-mail: boufas_sihem@yahoo.fr

(Received 22 June 2009; accepted 9 July 2009; online 18 July 2009)

In the title compound, (C4H8N3O)2[CdCl4], the asymmetric unit comprises two creatininium cations and one tetra­chloridocadmate anion. Cd⋯O secondary bonding links one of the two imidazole rings and the anion into ion pairs. The free and bound cations form layers between which the [CdCl4]2− anions are sandwiched. The CdII atom adopts a distorted trigonal-bipyramidal geometry in which the Cd⋯O bond is axial. Inter­molecular N—H⋯Cl hydrogen bonds form a two-dimensional network parallel to (001) which ensures the junction between creatininium cations and [CdCl4]2− anions.

Related literature

An abnormal level of creatinine in biological fluids is an indicator of various medical conditions, see: Narayanan & Appleton (1980[Narayanan, S. & Appleton, H. D. (1980). Clin. Chem. 26, 1119-1126.]). For inter­actions between creatinine and biologically important metal ions, see: Canty et al. (1979[Canty, A. J., Chaichit, N. & Gatehouse, B. M. (1979). Acta Cryst. B35, 592-596.]). Different complex species are formed depending on the reaction conditions, see: Nishida & Kida (1985[Nishida, Y. & Kida, S. (1985). Bull. Chem. Soc. Jpn, 58, 383-384.]). For bond lengths in the neutral creatinine mol­ecule, see: Smith & White (2001[Smith, G. & White, J. M. (2001). Aust. J. Chem. 54, 97-100.]) and in creatinium compounds, see: Wilkinson & Harrison (2005[Wilkinson, H. S. & Harrison, W. T. A. (2005). Acta Cryst. E61, m1228-m1230.]). For Cd—Cl bond distances in dichlorido­bis(creatinine)cadmium(II), see: Okabe et al. (1995[Okabe, N., Ikeda, K., Kohyama, Y. & Sasaki, Y. (1995). Acta Cryst. C51, 224-226.]). For Cl—Cd—Cl bond angles in bis­(2,3,5-triphenyl­tetra­zolium)tetra­chloridocadmate(II), see: Zhang et al. (2007[Zhang, S.-F., Yang, X.-G., Liu, Z., Li, W.-H. & Hou, B.-R. (2007). Acta Cryst. E63, m1583.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • (C4H8N3O)2[CdCl4]

  • Mr = 482.48

  • Triclinic, [P \overline 1]

  • a = 7.5203 (4) Å

  • b = 7.6761 (3) Å

  • c = 15.0757 (7) Å

  • α = 79.476 (2)°

  • β = 85.438 (5)°

  • γ = 83.214 (3)°

  • V = 848.14 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.93 mm−1

  • T = 100 K

  • 0.25 × 0.15 × 0.1 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick,1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.644, Tmax = 0.831

  • 10950 measured reflections

  • 3843 independent reflections

  • 3711 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.048

  • S = 1.11

  • 3843 reflections

  • 216 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd1—Cl1 2.4571 (5)
Cd1—Cl4 2.4596 (4)
Cd1—Cl2 2.4627 (4)
Cd1—Cl3 2.5678 (4)
Cd1—O1 2.6854 (13)
Cl1—Cd1—Cl4 116.512 (15)
Cl1—Cd1—Cl2 120.122 (17)
Cl4—Cd1—Cl2 117.621 (16)
Cl1—Cd1—Cl3 96.649 (15)
Cl4—Cd1—Cl3 98.074 (15)
Cl2—Cd1—Cl3 99.319 (15)
Cl1—Cd1—O1 82.18 (3)
Cl4—Cd1—O1 82.85 (3)
Cl2—Cd1—O1 80.95 (3)
Cl3—Cd1—O1 178.75 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl3 0.79 (2) 2.41 (2) 3.1840 (16) 168 (2)
N2—H2⋯Cl3i 0.80 (3) 2.48 (3) 3.273 (2) 170 (3)
N4—H4⋯Cl4 0.75 (2) 2.70 (2) 3.2967 (17) 139 (2)
N6—H6⋯Cl2ii 0.88 (3) 2.32 (3) 3.1673 (18) 161 (3)
N2—H22⋯Cl1 0.90 (2) 2.34 (2) 3.2368 (18) 171 (2)
N6—H66⋯Cl4iii 0.81 (3) 2.55 (3) 3.2117 (17) 140 (2)
Symmetry codes: (i) x, y+1, z; (ii) x-1, y, z; (iii) -x-1, -y, -z+1.

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Creatinine (2-amino- 1,5-dihydro- 1-methyl-4H-imidazol-4-one) is the waste product of protein metabolism that is found in the urine. It can be measured to assess overall kidney function. An abnormal level of creatinine in biological fluids is an indicator of various malady states (Narayanan & Appleton, 1980).

Over the last decade, there have been an increasing number of reports on compounds resulting from the combination of creatinine and biologically important metal ions, in order to obtain structural information on the mode of interaction between them. (Canty et al., 1979), however, the different complex species are formed depending on the reaction conditions (Nishida & Kida, 1985). In the title compound, (I), we determine the crystal structure of a new cadmium complex showing the metal coordination and the structure cohesion. It is the first example of salt containing creatininium cation and (CdCl4)2- anion.

The asymmetric unit, shown in Fig. 1, consists of the tetrachlorocadmate anion and two cations of creatinine protonated. Hence, the complex investigated is better formulated as: 2(C4H8ON3)+,(CdC14)2-.

The cadmium is coordinated to four Cl atoms and one O atom forming a distorted trigonal bipyramid CdX4O. As can be seen in Table 1, three of the four Cd1—Cl bond distances (2.4571 (5), 2.4596 (4) and 2.4627 (4) Å) are similar to those found in the dichlorobis(creatinine)cadmium(II) (Okabe et al., 1995) and significantly shorter than the axial Cd···Cl3 distance (2.5678 (4) Å) witch is in trans position to the O atom (dCd1—O = 2.6854 (13) Å and 0.1 Å longer than the other chlorine atoms. In the trigonal bipyramid CdCl4O, the displacement of Cd towards Cl3 from the equatorial plane defined by Cl1; Cl2 and Cl4 atoms is 0.2574 (2) Å. Furthermore, the Cl—Cd—Cl bond angles in the title complex fall in the range 96.649 (15) ° -120.122 (17) ° which is very different to those of the free anionic CdCl4 moiety of bis(2,3,5-triphenyltetrazolium) tetrachloridocadmate(II) (Zhang et al., 2007) where the Cl—Cd—Cl bond angles lie in the range 107.18 (3) ° - 117.232 (16) °.

As expected, creatininium cations are approximately planar. In the bound cation, the r.m.s. deviation for the non-H atoms = 0.0311 Å, the maximum deviation of N5 from the mean plane is 0.0592 (15) Å. However, the free cation has a r.m.s deviation for non-H atoms = 0.0488 Å with a maximum deviation from the mean plane = 0.0851 (0.11) Å (for O2).

In table 1, we notice that in each creatininium cation, the three C—N bond distances are clearly different, with C6—N4 and C3—N1 much longer than the other ones. This results in the localization of the exocyclic C3—N2 [1.325 (2) Å] & C3—N3 [1.321 (2) Å] and C6—N5 [1.319 (2) Å] & C6—N6 [1.322 (2) Å] double bonds in the free and bound creatininium respectively and the adjacent single bonds C3—N1 [1.371 (2) Å] and C6—N4 [1.380 (2) Å]. These values somewhat compared with the intermediate, delocalized values in the parent neutral creatinine molecule [1.320 (3) and 1.349 (3) Å], respectively (Smith & White, 2001). Such difference in C—N bonds has been reported in some creatinium compounds (Wilkinson et al., 2005).

In the crystal structure of (I), the anionic and cationic components are linked by N—H···Cl, hydrogen bonds into a continuous two-dimensional network (Table 3). In which alternating R22(8), R24(12) and R66(28) (Bernstein, et al.,1995) hydrogen-bonded rings are formed. Fig. 2 also shows a strong intramolecular hydrogen bond (N4—H4···Cl4) which can be described with an S(6) graph set motif. These rings form layers joined by means of the N6—H6···Cl2 hydrogen bond. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for this pattern is R44(12) ring (Fig. 3).

Related literature top

An abnormal level of creatinine in biological fluids is an indicator of various medical conditions, see: Narayanan & Appleton (1980). For interactions between creatinine and biologically important metal ions, see: Canty et al. (1979). Different complex species are formed depending on the reaction conditions, see: Nishida & Kida (1985). For bond lengths in the neutral creatinine molecule, see: Smith & White (2001) and in creatinium compounds, see: Wilkinson & Harrison (2005). For Cd—Cl bond distances in dichlorobis(creatinine)cadmium(II), see: Okabe et al. (1995). For Cl—Cd—Cl bond angles in bis(2,3,5-triphenyltetrazolium)tetrachloridocadmate(II), see: Zhang et al., (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter et al. (1990).

Experimental top

The title compound was crystallized from a supersaturated hydrochloric acid solution (45%, 5 ml) prepared using doubly distilled water and a mixture of cadmium(II) chloride (1.83 g) and creatinine (2.26 g). Colourless plates-shaped single crystals of (I) were obtained at ambient temperature by slow evaporation of the solution.

Refinement top

The iminium and ammino H atoms were located in a difference Fourier map and was refined isotropically. The methyl H atoms were constrained to an ideal geometry (C—H = 0.96 Å) with Uiso(H) = 1.2Ueq(C), but were allowed to rotate freely about the C—C bonds. The methylene H atoms were placed in geometrically idealized positions (C—H = 0.97 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The independent components of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of the R22(8), R24(12) and R66(28) rings. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in the motif have been omitted for clarity.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the R44(12) ring set motif
(I) top
Crystal data top
(C4H8N3O)2[CdCl4]Z = 2
Mr = 482.48F(000) = 476
Triclinic, P1Dx = 1.889 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5203 (4) ÅCell parameters from 8132 reflections
b = 7.6761 (3) Åθ = 2.7–27.4°
c = 15.0757 (7) ŵ = 1.93 mm1
α = 79.476 (2)°T = 100 K
β = 85.438 (5)°Plates, colourless
γ = 83.214 (3)°0.25 × 0.15 × 0.1 mm
V = 848.14 (7) Å3
Data collection top
Nonius KappaCCD
diffractometer
3843 independent reflections
Radiation source: fine-focus sealed X-ray tube3711 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ scans, and ω scans with κ offsetsθmax = 27.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick,1996)
h = 99
Tmin = 0.644, Tmax = 0.831k = 99
10950 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0154P)2 + 0.4426P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.002
3843 reflectionsΔρmax = 0.77 e Å3
216 parametersΔρmin = 0.54 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.08 (2)
Crystal data top
(C4H8N3O)2[CdCl4]γ = 83.214 (3)°
Mr = 482.48V = 848.14 (7) Å3
Triclinic, P1Z = 2
a = 7.5203 (4) ÅMo Kα radiation
b = 7.6761 (3) ŵ = 1.93 mm1
c = 15.0757 (7) ÅT = 100 K
α = 79.476 (2)°0.25 × 0.15 × 0.1 mm
β = 85.438 (5)°
Data collection top
Nonius KappaCCD
diffractometer
3843 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick,1996)
3711 reflections with I > 2σ(I)
Tmin = 0.644, Tmax = 0.831Rint = 0.064
10950 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.77 e Å3
3843 reflectionsΔρmin = 0.54 e Å3
216 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.066723 (15)0.225860 (16)0.280951 (8)0.01066 (5)
Cl10.04670 (6)0.54257 (6)0.24433 (3)0.01616 (9)
Cl20.36325 (5)0.13754 (7)0.34349 (3)0.01814 (10)
Cl30.14704 (6)0.17937 (6)0.11755 (3)0.01524 (9)
Cl40.15980 (5)0.01360 (6)0.32005 (3)0.01418 (9)
O10.01715 (17)0.28215 (19)0.45064 (9)0.0176 (3)
N40.3242 (2)0.2622 (2)0.47014 (11)0.0130 (3)
N50.38183 (19)0.3218 (2)0.60861 (10)0.0134 (3)
N60.6224 (2)0.2535 (2)0.53371 (12)0.0179 (3)
C50.1579 (2)0.2895 (2)0.49571 (12)0.0127 (3)
C60.4526 (2)0.2762 (2)0.53994 (12)0.0126 (3)
C70.1888 (2)0.3305 (3)0.59036 (12)0.0144 (4)
H7A0.12080.24270.6330.017*
H7B0.15650.44810.59290.017*
C80.4703 (3)0.3343 (3)0.69777 (13)0.0213 (4)
H8A0.42730.42920.72080.026*
H8B0.4440.22390.73830.026*
H8C0.59760.3580.69260.026*
O20.40943 (18)0.36919 (18)0.10195 (9)0.0191 (3)
N10.2474 (2)0.5415 (2)0.00578 (11)0.0139 (3)
C10.3552 (2)0.5126 (2)0.08243 (12)0.0138 (3)
C20.3922 (2)0.6952 (2)0.13185 (12)0.0127 (3)
H2A0.520.70380.14230.015*
H2B0.33640.72390.18930.015*
N20.1430 (2)0.7800 (2)0.07081 (11)0.0176 (3)
N30.3113 (2)0.8115 (2)0.06971 (10)0.0129 (3)
C30.2295 (2)0.7185 (2)0.00098 (12)0.0130 (3)
C40.3227 (3)1.0033 (2)0.08903 (13)0.0166 (4)
H4A0.25741.05530.14130.02*
H4B0.44611.02560.10040.02*
H4C0.27221.05510.03810.02*
H40.340 (3)0.224 (3)0.4298 (17)0.017 (6)*
H660.689 (4)0.238 (3)0.5785 (19)0.032 (7)*
H60.653 (4)0.215 (4)0.486 (2)0.038 (8)*
H10.212 (3)0.462 (3)0.0292 (17)0.024 (6)*
H220.092 (3)0.704 (3)0.1156 (17)0.024 (6)*
H20.142 (3)0.884 (4)0.0753 (18)0.030 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.00992 (7)0.01213 (8)0.01001 (7)0.00125 (5)0.00016 (5)0.00229 (5)
Cl10.0200 (2)0.0126 (2)0.0151 (2)0.00070 (16)0.00008 (16)0.00248 (16)
Cl20.01099 (18)0.0271 (3)0.0158 (2)0.00115 (16)0.00235 (15)0.00372 (18)
Cl30.0220 (2)0.0142 (2)0.0106 (2)0.00484 (16)0.00282 (16)0.00459 (16)
Cl40.01278 (18)0.0140 (2)0.0155 (2)0.00334 (15)0.00140 (15)0.00161 (16)
O10.0146 (6)0.0226 (7)0.0159 (7)0.0034 (5)0.0043 (5)0.0055 (5)
N40.0150 (7)0.0162 (8)0.0090 (8)0.0040 (6)0.0002 (6)0.0044 (6)
N50.0122 (7)0.0171 (8)0.0110 (7)0.0009 (6)0.0017 (5)0.0042 (6)
N60.0132 (7)0.0249 (9)0.0151 (8)0.0055 (6)0.0003 (6)0.0005 (7)
C50.0147 (8)0.0111 (9)0.0121 (9)0.0020 (6)0.0001 (6)0.0013 (7)
C60.0144 (8)0.0101 (8)0.0120 (8)0.0014 (6)0.0008 (6)0.0009 (7)
C70.0130 (8)0.0181 (9)0.0129 (9)0.0014 (6)0.0001 (6)0.0052 (7)
C80.0223 (9)0.0278 (11)0.0132 (9)0.0003 (8)0.0066 (7)0.0072 (8)
O20.0242 (7)0.0130 (7)0.0206 (7)0.0005 (5)0.0015 (5)0.0059 (5)
N10.0178 (7)0.0111 (8)0.0125 (8)0.0033 (6)0.0006 (6)0.0009 (6)
C10.0137 (8)0.0155 (9)0.0130 (9)0.0013 (6)0.0040 (7)0.0032 (7)
C20.0148 (8)0.0135 (9)0.0102 (8)0.0009 (6)0.0008 (6)0.0039 (7)
N20.0241 (8)0.0143 (9)0.0143 (8)0.0038 (6)0.0052 (6)0.0039 (7)
N30.0170 (7)0.0105 (8)0.0116 (7)0.0018 (6)0.0014 (6)0.0034 (6)
C30.0140 (8)0.0125 (9)0.0129 (9)0.0022 (6)0.0019 (6)0.0021 (7)
C40.0226 (9)0.0115 (9)0.0158 (9)0.0026 (7)0.0017 (7)0.0031 (7)
Geometric parameters (Å, º) top
Cd1—Cl12.4571 (5)C8—H8B0.96
Cd1—Cl42.4596 (4)C8—H8C0.96
Cd1—Cl22.4627 (4)O2—C11.208 (2)
Cd1—Cl32.5678 (4)N1—C31.371 (2)
Cd1—O12.6854 (13)N1—C11.394 (2)
O1—C51.213 (2)N1—H10.79 (3)
N4—C61.380 (2)C1—C21.508 (3)
N4—C51.387 (2)C2—N31.460 (2)
N4—H40.75 (2)C2—H2A0.97
N5—C61.319 (2)C2—H2B0.97
N5—C71.463 (2)N2—C31.325 (2)
N5—C81.466 (2)N2—H220.90 (3)
N6—C61.322 (2)N2—H20.81 (3)
N6—H660.81 (3)N3—C31.321 (2)
N6—H60.87 (3)N3—C41.459 (2)
C5—C71.511 (2)C4—H4A0.96
C7—H7A0.97C4—H4B0.96
C7—H7B0.97C4—H4C0.96
C8—H8A0.96
Cl1—Cd1—Cl4116.512 (15)N5—C8—H8B109.5
Cl1—Cd1—Cl2120.122 (17)H8A—C8—H8B109.5
Cl4—Cd1—Cl2117.621 (16)N5—C8—H8C109.5
Cl1—Cd1—Cl396.649 (15)H8A—C8—H8C109.5
Cl4—Cd1—Cl398.074 (15)H8B—C8—H8C109.5
Cl2—Cd1—Cl399.319 (15)C3—N1—C1110.39 (15)
Cl1—Cd1—O182.18 (3)C3—N1—H1127.6 (18)
Cl4—Cd1—O182.85 (3)C1—N1—H1121.8 (18)
Cl2—Cd1—O180.95 (3)O2—C1—N1125.86 (18)
Cl3—Cd1—O1178.75 (3)O2—C1—C2128.57 (17)
C5—O1—Cd1132.55 (13)N1—C1—C2105.55 (15)
C6—N4—C5110.28 (15)N3—C2—C1102.80 (14)
C6—N4—H4122.8 (18)N3—C2—H2A111.2
C5—N4—H4125.3 (18)C1—C2—H2A111.2
C6—N5—C7110.56 (14)N3—C2—H2B111.2
C6—N5—C8126.70 (15)C1—C2—H2B111.2
C7—N5—C8122.02 (15)H2A—C2—H2B109.1
C6—N6—H66120.4 (19)C3—N2—H22119.4 (15)
C6—N6—H6119.0 (19)C3—N2—H2120.6 (19)
H66—N6—H6117 (3)H22—N2—H2120 (2)
O1—C5—N4126.58 (18)C3—N3—C4127.85 (15)
O1—C5—C7127.43 (17)C3—N3—C2110.50 (15)
N4—C5—C7105.99 (14)C4—N3—C2121.64 (15)
N5—C6—N6126.98 (17)N3—C3—N2127.02 (17)
N5—C6—N4110.34 (15)N3—C3—N1110.42 (15)
N6—C6—N4122.61 (17)N2—C3—N1122.56 (17)
N5—C7—C5102.69 (14)N3—C4—H4A109.5
N5—C7—H7A111.2N3—C4—H4B109.5
C5—C7—H7A111.2H4A—C4—H4B109.5
N5—C7—H7B111.2N3—C4—H4C109.5
C5—C7—H7B111.2H4A—C4—H4C109.5
H7A—C7—H7B109.1H4B—C4—H4C109.5
N5—C8—H8A109.5
Cl1—Cd1—O1—C579.99 (16)O1—C5—C7—N5179.62 (18)
Cl4—Cd1—O1—C538.13 (16)N4—C5—C7—N50.20 (19)
Cl2—Cd1—O1—C5157.67 (17)C3—N1—C1—O2172.47 (17)
Cd1—O1—C5—N42.7 (3)C3—N1—C1—C25.74 (19)
Cd1—O1—C5—C7177.09 (13)O2—C1—C2—N3172.51 (18)
C6—N4—C5—O1178.19 (18)N1—C1—C2—N35.63 (18)
C6—N4—C5—C72.0 (2)C1—C2—N3—C33.83 (19)
C7—N5—C6—N6179.08 (18)C1—C2—N3—C4177.23 (15)
C8—N5—C6—N68.7 (3)C4—N3—C3—N21.6 (3)
C7—N5—C6—N43.8 (2)C2—N3—C3—N2179.59 (18)
C8—N5—C6—N4174.16 (17)C4—N3—C3—N1179.35 (16)
C5—N4—C6—N53.7 (2)C2—N3—C3—N10.5 (2)
C5—N4—C6—N6179.05 (17)C1—N1—C3—N33.5 (2)
C6—N5—C7—C52.43 (19)C1—N1—C3—N2175.66 (17)
C8—N5—C7—C5173.30 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl30.79 (2)2.41 (2)3.1840 (16)168 (2)
N2—H2···Cl3i0.80 (3)2.48 (3)3.273 (2)170 (3)
N4—H4···Cl40.75 (2)2.70 (2)3.2967 (17)139 (2)
N6—H6···Cl2ii0.88 (3)2.32 (3)3.1673 (18)161 (3)
N2—H22···Cl10.90 (2)2.34 (2)3.2368 (18)171 (2)
N6—H66···Cl4iii0.81 (3)2.55 (3)3.2117 (17)140 (2)
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x1, y, z+1.

Experimental details

Crystal data
Chemical formula(C4H8N3O)2[CdCl4]
Mr482.48
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.5203 (4), 7.6761 (3), 15.0757 (7)
α, β, γ (°)79.476 (2), 85.438 (5), 83.214 (3)
V3)848.14 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.93
Crystal size (mm)0.25 × 0.15 × 0.1
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick,1996)
Tmin, Tmax0.644, 0.831
No. of measured, independent and
observed [I > 2σ(I)] reflections
10950, 3843, 3711
Rint0.064
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.048, 1.11
No. of reflections3843
No. of parameters216
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.77, 0.54

Computer programs: COLLECT (Nonius, 2002), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) top
Cd1—Cl12.4571 (5)Cd1—Cl32.5678 (4)
Cd1—Cl42.4596 (4)Cd1—O12.6854 (13)
Cd1—Cl22.4627 (4)
Cl1—Cd1—Cl4116.512 (15)Cl2—Cd1—Cl399.319 (15)
Cl1—Cd1—Cl2120.122 (17)Cl1—Cd1—O182.18 (3)
Cl4—Cd1—Cl2117.621 (16)Cl4—Cd1—O182.85 (3)
Cl1—Cd1—Cl396.649 (15)Cl2—Cd1—O180.95 (3)
Cl4—Cd1—Cl398.074 (15)Cl3—Cd1—O1178.75 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl30.79 (2)2.41 (2)3.1840 (16)168 (2)
N2—H2···Cl3i0.80 (3)2.48 (3)3.273 (2)170 (3)
N4—H4···Cl40.75 (2)2.70 (2)3.2967 (17)139 (2)
N6—H6···Cl2ii0.88 (3)2.32 (3)3.1673 (18)161 (3)
N2—H22···Cl10.90 (2)2.34 (2)3.2368 (18)171 (2)
N6—H66···Cl4iii0.81 (3)2.55 (3)3.2117 (17)140 (2)
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x1, y, z+1.
 

Acknowledgements

This work was supported by the Université 20 Aout 1955 Skikda. Algéria. We would like to thank Thierry Roisnel from Renne 1 University for collecting the data and Olivier Mentré from UCCS, Equipe de Chimie du Solide, UMR CNRS 8181, ENSC Lille. France for his useful help.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCanty, A. J., Chaichit, N. & Gatehouse, B. M. (1979). Acta Cryst. B35, 592–596.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNarayanan, S. & Appleton, H. D. (1980). Clin. Chem. 26, 1119–1126.  CAS PubMed Web of Science Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNishida, Y. & Kida, S. (1985). Bull. Chem. Soc. Jpn, 58, 383–384.  CrossRef CAS Web of Science Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOkabe, N., Ikeda, K., Kohyama, Y. & Sasaki, Y. (1995). Acta Cryst. C51, 224–226.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & White, J. M. (2001). Aust. J. Chem. 54, 97–100.  Web of Science CSD CrossRef CAS Google Scholar
First citationWilkinson, H. S. & Harrison, W. T. A. (2005). Acta Cryst. E61, m1228–m1230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-F., Yang, X.-G., Liu, Z., Li, W.-H. & Hou, B.-R. (2007). Acta Cryst. E63, m1583.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m930-m931
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds