metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-(di­methyl­amino)pyridinium] tetra­bromidocobaltate(II)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 24 June 2009; accepted 24 June 2009; online 1 July 2009)

The metal atom in the title salt, (C7H11N2)2[CoBr4], shows a slightly distorted tetra­hedral coordination. The cation forms an N—H⋯Br hydrogen bond to one of the two Br atoms. The CoII atom lies on a special position of 2 site symmetry.

Related literature

For bis[4-(dimethylamino)pyridinium] tetrabromido­cadmate(II) monohydrate, see: Lo & Ng (2009[Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m560.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H11N2)2[CoBr4]

  • Mr = 624.93

  • Monoclinic, C 2/c

  • a = 10.4020 (2) Å

  • b = 12.1601 (2) Å

  • c = 16.9167 (2) Å

  • β = 104.270 (1)°

  • V = 2073.76 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.54 mm−1

  • T = 140 K

  • 0.40 × 0.35 × 0.30 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.131, Tmax = 0.184 (expected range = 0.055–0.077)

  • 8405 measured reflections

  • 2386 independent reflections

  • 2228 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.054

  • S = 1.06

  • 2386 reflections

  • 111 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br1 0.87 (1) 2.71 (2) 3.454 (2) 144 (3)

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For bis(4-dimethylaminopyridinium) tetrabromidocadmate, see: Lo & Ng (2009).

Experimental top

Cobalt nitrate hexahydrate (0.89 g, 3 mmol) dissolved in a minimum volume of water was mixed with 4-dimethylaminopyridinium hydrobromide perbromide (1.1 g, 3 mmol) dissolved in 50 ml ethanol. The mixture was heated for 1 hour. The red solution slowly turned to blue solution. This was set aside for the growth of crystals.

Refinement top

Hydrogen atoms were placed at calculated positions (C–H 0.95–0.98 Å) and were treated as riding on their parent atoms, with U(H) set to 1.2U~eq~(C). The amino H-atom was refined with a distance restraint of 0.84±0.01 Å.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of the title compound at the 70% probability level. H atoms are drawn as spheres of arbitrary radius.
Bis[4-(dimethylamino)pyridinium] tetrabromidocobaltate(II) top
Crystal data top
(C7H11N2)2[CoBr4]F(000) = 1204
Mr = 624.93Dx = 2.002 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6526 reflections
a = 10.4020 (2) Åθ = 2.5–28.4°
b = 12.1601 (2) ŵ = 8.54 mm1
c = 16.9167 (2) ÅT = 140 K
β = 104.270 (1)°Block, blue
V = 2073.76 (6) Å30.40 × 0.35 × 0.30 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
2386 independent reflections
Radiation source: fine-focus sealed tube2228 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1113
Tmin = 0.131, Tmax = 0.184k = 1515
8405 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0282P)2 + 3.2278P]
where P = (Fo2 + 2Fc2)/3
2386 reflections(Δ/σ)max = 0.001
111 parametersΔρmax = 0.49 e Å3
1 restraintΔρmin = 0.75 e Å3
Crystal data top
(C7H11N2)2[CoBr4]V = 2073.76 (6) Å3
Mr = 624.93Z = 4
Monoclinic, C2/cMo Kα radiation
a = 10.4020 (2) ŵ = 8.54 mm1
b = 12.1601 (2) ÅT = 140 K
c = 16.9167 (2) Å0.40 × 0.35 × 0.30 mm
β = 104.270 (1)°
Data collection top
Bruker SMART APEX
diffractometer
2386 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2228 reflections with I > 2σ(I)
Tmin = 0.131, Tmax = 0.184Rint = 0.024
8405 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0211 restraint
wR(F2) = 0.054H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.49 e Å3
2386 reflectionsΔρmin = 0.75 e Å3
111 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.66045 (2)0.777934 (17)0.345907 (13)0.02380 (7)
Br20.36829 (2)0.555780 (17)0.314578 (12)0.02431 (7)
Co10.50000.67093 (3)0.25000.01636 (9)
N10.7776 (2)0.51482 (16)0.39578 (13)0.0268 (4)
H10.746 (3)0.5670 (19)0.3610 (16)0.044 (9)*
N20.94584 (19)0.27718 (16)0.56095 (11)0.0238 (4)
C10.8017 (2)0.53686 (18)0.47578 (15)0.0267 (5)
H1A0.78090.60760.49290.032*
C20.8555 (2)0.46012 (18)0.53283 (14)0.0235 (4)
H20.87090.47700.58920.028*
C30.88849 (19)0.35447 (17)0.50763 (12)0.0183 (4)
C40.8593 (2)0.33468 (17)0.42225 (12)0.0194 (4)
H40.87820.26500.40240.023*
C50.8047 (2)0.41504 (19)0.36914 (13)0.0243 (4)
H50.78510.40090.31220.029*
C60.9690 (3)0.2937 (3)0.64888 (14)0.0364 (6)
H6A0.88710.31940.66160.055*
H6B1.03900.34880.66680.055*
H6C0.99660.22410.67720.055*
C70.9865 (2)0.17184 (19)0.53287 (15)0.0289 (5)
H7A1.03640.18500.49160.043*
H7B0.90760.12770.50900.043*
H7C1.04260.13230.57920.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01960 (12)0.02113 (11)0.02904 (12)0.00386 (8)0.00292 (9)0.00728 (8)
Br20.03047 (13)0.02293 (12)0.02059 (11)0.00884 (8)0.00829 (9)0.00109 (7)
Co10.01504 (19)0.01626 (17)0.01751 (18)0.0000.00345 (14)0.000
N10.0223 (10)0.0229 (9)0.0346 (10)0.0040 (7)0.0060 (8)0.0059 (8)
N20.0206 (9)0.0335 (10)0.0166 (8)0.0013 (7)0.0029 (7)0.0029 (7)
C10.0198 (11)0.0233 (10)0.0391 (13)0.0010 (8)0.0110 (9)0.0074 (9)
C20.0178 (10)0.0300 (11)0.0245 (10)0.0046 (8)0.0085 (8)0.0094 (8)
C30.0112 (9)0.0249 (10)0.0190 (9)0.0028 (7)0.0042 (7)0.0007 (8)
C40.0170 (10)0.0218 (9)0.0191 (9)0.0013 (8)0.0040 (7)0.0012 (7)
C50.0214 (10)0.0290 (11)0.0212 (10)0.0004 (9)0.0030 (8)0.0005 (8)
C60.0301 (13)0.0608 (17)0.0166 (10)0.0005 (12)0.0027 (9)0.0048 (10)
C70.0251 (12)0.0268 (11)0.0320 (12)0.0034 (9)0.0019 (9)0.0071 (9)
Geometric parameters (Å, º) top
Br1—Co12.4033 (3)C2—C31.422 (3)
Br2—Co12.4019 (3)C2—H20.9500
Co1—Br2i2.4019 (3)C3—C41.421 (3)
Co1—Br1i2.4033 (3)C4—C51.354 (3)
N1—C11.341 (3)C4—H40.9500
N1—C51.348 (3)C5—H50.9500
N1—H10.872 (10)C6—H6A0.9800
N2—C31.337 (3)C6—H6B0.9800
N2—C61.461 (3)C6—H6C0.9800
N2—C71.464 (3)C7—H7A0.9800
C1—C21.360 (3)C7—H7B0.9800
C1—H1A0.9500C7—H7C0.9800
Br2—Co1—Br2i108.678 (18)C4—C3—C2116.79 (19)
Br2—Co1—Br1112.808 (7)C5—C4—C3120.1 (2)
Br2i—Co1—Br1104.098 (8)C5—C4—H4119.9
Br2—Co1—Br1i104.099 (8)C3—C4—H4119.9
Br2i—Co1—Br1i112.808 (7)N1—C5—C4121.0 (2)
Br1—Co1—Br1i114.444 (18)N1—C5—H5119.5
C1—N1—C5121.0 (2)C4—C5—H5119.5
C1—N1—H1119 (2)N2—C6—H6A109.5
C5—N1—H1120 (2)N2—C6—H6B109.5
C3—N2—C6121.6 (2)H6A—C6—H6B109.5
C3—N2—C7120.84 (18)N2—C6—H6C109.5
C6—N2—C7117.52 (19)H6A—C6—H6C109.5
N1—C1—C2121.4 (2)H6B—C6—H6C109.5
N1—C1—H1A119.3N2—C7—H7A109.5
C2—C1—H1A119.3N2—C7—H7B109.5
C1—C2—C3119.6 (2)H7A—C7—H7B109.5
C1—C2—H2120.2N2—C7—H7C109.5
C3—C2—H2120.2H7A—C7—H7C109.5
N2—C3—C4120.97 (19)H7B—C7—H7C109.5
N2—C3—C2122.24 (19)
C5—N1—C1—C20.7 (3)C1—C2—C3—N2177.6 (2)
N1—C1—C2—C30.7 (3)C1—C2—C3—C41.6 (3)
C6—N2—C3—C4176.2 (2)N2—C3—C4—C5178.1 (2)
C7—N2—C3—C43.1 (3)C2—C3—C4—C51.0 (3)
C6—N2—C3—C24.7 (3)C1—N1—C5—C41.2 (3)
C7—N2—C3—C2176.0 (2)C3—C4—C5—N10.3 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br10.87 (1)2.71 (2)3.454 (2)144 (3)

Experimental details

Crystal data
Chemical formula(C7H11N2)2[CoBr4]
Mr624.93
Crystal system, space groupMonoclinic, C2/c
Temperature (K)140
a, b, c (Å)10.4020 (2), 12.1601 (2), 16.9167 (2)
β (°) 104.270 (1)
V3)2073.76 (6)
Z4
Radiation typeMo Kα
µ (mm1)8.54
Crystal size (mm)0.40 × 0.35 × 0.30
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.131, 0.184
No. of measured, independent and
observed [I > 2σ(I)] reflections
8405, 2386, 2228
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.054, 1.06
No. of reflections2386
No. of parameters111
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.75

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br10.87 (1)2.71 (2)3.454 (2)144 (3)
 

Acknowledgements

We thank the University of Malaya (RG020/09AFR) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m560.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds