organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1800-o1801

3-Acetyl-6-chloro-1-ethyl-4-phenyl­quinolin-2(1H)-one

aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, and bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
*Correspondence e-mail: nawaz_f@yahoo.co.in

(Received 25 June 2009; accepted 27 June 2009; online 8 July 2009)

In the title compound, C19H16ClNO2, the dihedral angle between the plane of the phenyl substituent and 3-acetyl­quinoline unit is 75.44 (5)°. The crystal structure is stabilized by inter­molecular C—H⋯O hydrogen bonds

Related literature

For general background to isoquinolines, see: Broadhurst et al. (2001[Broadhurst, M. D., Michael, J. J., William, H. W. & Daryl, S. (2001). US Patent No. 6 235 787.]); Behrens (1999[Behrens, C. H. (1999). US Patent No. 4 942 163.]); Broadhurst (1991[Broadhurst, M. D. (1991). US Patent No. 5 070 097.]); Chao et al. (1999[Chao, Q., Deng, L., Shih, H., Leoni, L. M., Genini, D., Carson, D. A. & Cottam, H. B. (1999). J. Med. Chem. 2, 3860-3873.]); Cobet & Luckner (1971[Cobet, M. & Luckner, M. (1971). Phytochemistry, 10, 1031-1036.]); Kametani (1968[Kametani, T. (1968). The Chemistry of the Isoquinoline Alkaloids Tokyo: Hirokawa; Amsterdam: Elsevier.]); Lamberton & Price (1953[Lamberton, J. A. & Price, J. R. (1953). Aust. J. Chem. 6, 66-77.]); Majumdar & Mukhopadhyay (2003[Majumdar, K. C. & Mukhopadhyay, P. P. (2003). Synthesis, pp. 97-100.]); Nayar et al. (1971[Nayar, M. N. S., Sutar, C. V. & Bhan, M. K. (1971). Phytochemistry, 10, 2843-2844.]); Storer et al. (1973[Storer, R., Young, D. W., Taylor, D. R. & Warner, J. M. (1973). Tetrahedron, 29, 1721-1723.]); Yong et al. (2001[Yong, R. L., Hyuk, K., Wha, S. K., Kyung, R. M., Youngsoo, K. & Seung, H. L. (2001). Synthesis, pp. 1851-1855.]). For related crystal structures, see: Yang et al. (2008[Yang, Y., Yang, P., Zhang, C. & Wu, B. (2008). Anal. Sci. 24, x97-x98.]); Choudhury & Guru Row (2006[Choudhury, A. R. & Guru Row, T. N. (2006). CrystEngComm, 8, 265-274.]); Choudhury et al. (2002[Choudhury, A. R., Urs, U. K., Guru Row, T. N. & Nagarajan, K. (2002). J. Mol. Struct. 605, 71-77.]); Hathwar et al. (2008[Hathwar, V. R., Prabakaran, K., Subashini, R., Manivel, P. & Khan, F. N. (2008). Acta Cryst. E64, o2295.]); Cho et al. (2002[Cho, W., Kim, E., Park, I. Y., Jeong, E. Y., Kim, T. S., Le, T. N., Kim, D. & Leed, E. (2002). Bioorg. Med. Chem. 10, 2953-2961.]); Manivel et al. (2009[Manivel, P., Hathwar, V. R., Nithya, P., Prabakaran, K. & Khan, F. N. (2009). Acta Cryst. E65, o137-o138.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16ClNO2

  • Mr = 325.78

  • Monoclinic, P 21 /c

  • a = 9.6480 (8) Å

  • b = 17.5756 (11) Å

  • c = 9.9694 (7) Å

  • β = 103.245 (8)°

  • V = 1645.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 290 K

  • 0.21 × 0.16 × 0.15 mm

Data collection
  • Oxford Xcalibur Eos(Nova) CCD detector diffractometer

  • Absorption correction: multi-scan (CrysAlisPro RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlisPro CCD and CrysAlisPro RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.925, Tmax = 0.965

  • 21440 measured reflections

  • 3061 independent reflections

  • 1928 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.106

  • S = 0.95

  • 3061 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O1i 0.93 2.58 3.341 (2) 139
C7—H7⋯O2ii 0.93 2.70 3.340 (2) 126
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: CrysAlisPro CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlisPro CCD and CrysAlisPro RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlisPro CCD; data reduction: CrysAlisPro RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlisPro CCD and CrysAlisPro RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CAMERON (Watkin et al., 1993[Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

2-quinolinone is an important biosynthetic (Cobet et al., 1971) and synthetic (Majumdar et al., 2003; Yong et al., 2001) precursor of quinoline alkaloids. Methylated compounds like 4-methoxy-1-methyl-2-quinolinone, folimine, 4,6-dimethoxy-1-methyl-2-quinolinone and 4,7,8-trimethoxy-1-methyl-2-quinolinone are widely distributed in nature (Nayar et al., 1971; Lamberton et al., 1953; Storer et al., 1973). Due to the importance of these derivatives (Broadhurst et al.; 2001; Behrens, 1999; Broadhurst, 1991; Chao et al., 1999; Kametani et al., 1968) and in continuous of our interest in quinolines and isoquinolines (Choudhury & Guru Row 2006; Choudhury et al., 2002; Hathwar et al., 2008; Cho et al., 2002; Manivel et al., 2009) we report here crystal structure of the title compound.

All the bond lengths are within normal ranges in the title compound. The two carbonyl O atoms participate in intermolecular C—H···O hydrogen bonding resulting the close packing of the crystal structure in the unit cell (Figure 2).

Related literature top

For general background see: Broadhurst et al. (2001); Behrens (1999); Broadhurst (1991); Chao et al. (1999); Cobet et al., (1971); Kametani et al.(1968); Lamberton et al. (1953); Majumdar et al. (2003); Nayar et al. (1971); Storer et al. (1973); Yong et al. (2001). For related crystal structures, see: Yang et al. (2008); Choudhury & Guru Row (2006); Choudhury et al. (2002); Hathwar et al. (2008); Cho et al. (2002); Manivel et al. (2009).

Experimental top

The solution of 3-acetyl-6-chloro-4-phenylquinolin-2(1H)-one in DMF was treated with ethylbromide and K2CO3 taken in DMF and stirred at RT for 4hr. The reaction contents were poured in crushed ice and solid otanined was filtered, dried. Single-crystals were obtained by recrystallization from petrol ether and ethylacetate solvent mixture.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with bond lengths C—H are 0.93 Å (for aromatic), 0.97 Å (for methylene) and 0.96 Å (for methyl). The Uiso(H) = 1.5Ueq(C) for methyl and Uiso(H) = 1.2Ueq(C) for all other carbon bound H atoms.

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of molecule (I) with 50% probability displacement ellipsoids with atom labelling.
[Figure 2] Fig. 2. The crystal packing diagram of (I).The dotted lines indicate intermolecular C—H···O hydrogen bonds. All H atoms have been omitted for clarity.
3-Acetyl-6-chloro-1-ethyl-4-phenylquinolin-2(1H)-one top
Crystal data top
C19H16ClNO2F(000) = 680
Mr = 325.78Dx = 1.315 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1023 reflections
a = 9.6480 (8) Åθ = 1.7–20.6°
b = 17.5756 (11) ŵ = 0.24 mm1
c = 9.9694 (7) ÅT = 290 K
β = 103.245 (8)°Block, colorless
V = 1645.5 (2) Å30.21 × 0.16 × 0.15 mm
Z = 4
Data collection top
Oxford Xcalibur Eos(Nova) CCD detector
diffractometer
3061 independent reflections
Radiation source: Enhance (Mo) X-ray Source1928 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scansθmax = 25.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1111
Tmin = 0.925, Tmax = 0.965k = 2121
21440 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0592P)2]
where P = (Fo2 + 2Fc2)/3
3061 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C19H16ClNO2V = 1645.5 (2) Å3
Mr = 325.78Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6480 (8) ŵ = 0.24 mm1
b = 17.5756 (11) ÅT = 290 K
c = 9.9694 (7) Å0.21 × 0.16 × 0.15 mm
β = 103.245 (8)°
Data collection top
Oxford Xcalibur Eos(Nova) CCD detector
diffractometer
3061 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1928 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.965Rint = 0.052
21440 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 0.95Δρmax = 0.16 e Å3
3061 reflectionsΔρmin = 0.27 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.51092 (6)1.05067 (3)0.20536 (6)0.0782 (2)
N10.35571 (15)0.79959 (8)0.53674 (14)0.0523 (4)
O10.18412 (15)0.72734 (8)0.59753 (16)0.0844 (5)
O20.11779 (16)0.83560 (9)0.49385 (18)0.0873 (5)
C10.2157 (2)0.78011 (11)0.52883 (19)0.0562 (5)
C20.10651 (18)0.82606 (9)0.43889 (18)0.0488 (4)
C30.13896 (17)0.88600 (9)0.36740 (17)0.0448 (4)
C40.32709 (19)0.96195 (10)0.29747 (17)0.0502 (4)
H40.25720.99160.24160.060*
C50.46684 (19)0.97641 (10)0.30238 (18)0.0527 (5)
C60.5726 (2)0.93221 (11)0.38284 (19)0.0585 (5)
H60.66770.94190.38450.070*
C70.53689 (19)0.87387 (10)0.46042 (18)0.0554 (5)
H70.60830.84430.51450.066*
C80.39405 (18)0.85855 (9)0.45869 (17)0.0467 (4)
C90.28714 (17)0.90307 (9)0.37541 (16)0.0434 (4)
C100.02678 (17)0.93280 (9)0.27678 (17)0.0460 (4)
C110.0010 (2)1.00621 (10)0.3121 (2)0.0602 (5)
H110.04831.02660.39560.072*
C120.1019 (2)1.04958 (11)0.2237 (2)0.0705 (6)
H120.12091.09880.24850.085*
C130.1740 (2)1.02063 (13)0.1000 (2)0.0743 (6)
H130.24071.05030.04020.089*
C140.1473 (2)0.94779 (13)0.0647 (2)0.0736 (6)
H140.19720.92760.01860.088*
C150.0470 (2)0.90426 (11)0.15166 (19)0.0607 (5)
H150.02870.85510.12600.073*
C160.0442 (2)0.80120 (11)0.4330 (2)0.0571 (5)
C170.0962 (2)0.73258 (12)0.3491 (2)0.0816 (7)
H17A0.19140.72100.35670.122*
H17B0.03500.69030.38200.122*
H17C0.09600.74220.25430.122*
C180.4651 (2)0.75412 (11)0.6307 (2)0.0636 (5)
H18A0.42540.73400.70440.076*
H18B0.54450.78680.67180.076*
C190.5185 (3)0.68935 (11)0.5580 (3)0.0872 (7)
H19A0.44040.65670.51740.131*
H19B0.58800.66090.62310.131*
H19C0.56130.70910.48730.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0683 (4)0.0909 (4)0.0817 (4)0.0115 (3)0.0305 (3)0.0206 (3)
N10.0456 (9)0.0560 (9)0.0506 (9)0.0030 (7)0.0012 (7)0.0075 (7)
O10.0660 (10)0.0864 (10)0.0946 (11)0.0072 (8)0.0056 (8)0.0460 (9)
O20.0636 (10)0.0908 (11)0.1172 (13)0.0045 (8)0.0406 (10)0.0133 (9)
C10.0508 (12)0.0585 (12)0.0568 (11)0.0002 (9)0.0069 (9)0.0104 (10)
C20.0433 (10)0.0521 (10)0.0504 (10)0.0007 (8)0.0093 (8)0.0018 (9)
C30.0434 (10)0.0505 (10)0.0398 (9)0.0019 (8)0.0081 (8)0.0000 (8)
C40.0457 (11)0.0591 (11)0.0457 (10)0.0028 (9)0.0105 (8)0.0031 (9)
C50.0511 (12)0.0613 (11)0.0480 (10)0.0042 (9)0.0158 (9)0.0025 (9)
C60.0423 (11)0.0728 (13)0.0604 (12)0.0048 (10)0.0115 (9)0.0070 (10)
C70.0426 (11)0.0650 (12)0.0545 (11)0.0032 (9)0.0030 (9)0.0006 (10)
C80.0463 (11)0.0486 (10)0.0435 (10)0.0001 (8)0.0070 (8)0.0025 (8)
C90.0419 (10)0.0467 (10)0.0407 (9)0.0003 (8)0.0076 (8)0.0009 (8)
C100.0394 (10)0.0529 (11)0.0475 (10)0.0041 (8)0.0138 (8)0.0063 (8)
C110.0623 (13)0.0567 (12)0.0617 (12)0.0062 (10)0.0146 (10)0.0015 (10)
C120.0735 (15)0.0572 (12)0.0872 (16)0.0202 (11)0.0316 (13)0.0094 (12)
C130.0627 (14)0.0896 (16)0.0722 (15)0.0289 (12)0.0186 (12)0.0254 (13)
C140.0675 (14)0.0857 (15)0.0602 (13)0.0178 (12)0.0003 (11)0.0037 (12)
C150.0607 (13)0.0625 (12)0.0547 (12)0.0122 (10)0.0045 (10)0.0005 (10)
C160.0507 (12)0.0596 (12)0.0593 (12)0.0019 (10)0.0093 (10)0.0124 (10)
C170.0712 (15)0.0829 (15)0.0854 (16)0.0190 (12)0.0067 (12)0.0039 (13)
C180.0598 (13)0.0666 (13)0.0579 (12)0.0084 (10)0.0002 (10)0.0159 (10)
C190.0915 (17)0.0672 (14)0.1005 (18)0.0208 (12)0.0172 (14)0.0104 (13)
Geometric parameters (Å, º) top
Cl1—C51.7344 (18)C10—C151.381 (2)
N1—C11.378 (2)C11—C121.383 (3)
N1—C81.396 (2)C11—H110.9300
N1—C181.476 (2)C12—C131.368 (3)
O1—C11.232 (2)C12—H120.9300
O2—C161.198 (2)C13—C141.368 (3)
C1—C21.460 (2)C13—H130.9300
C2—C31.348 (2)C14—C151.374 (3)
C2—C161.507 (2)C14—H140.9300
C3—C91.445 (2)C15—H150.9300
C3—C101.489 (2)C16—C171.488 (3)
C4—C51.362 (2)C17—H17A0.9600
C4—C91.400 (2)C17—H17B0.9600
C4—H40.9300C17—H17C0.9600
C5—C61.383 (3)C18—C191.502 (3)
C6—C71.375 (2)C18—H18A0.9700
C6—H60.9300C18—H18B0.9700
C7—C81.400 (2)C19—H19A0.9600
C7—H70.9300C19—H19B0.9600
C8—C91.405 (2)C19—H19C0.9600
C10—C111.380 (2)
C1—N1—C8122.28 (14)C12—C11—H11119.9
C1—N1—C18116.83 (15)C13—C12—C11120.54 (19)
C8—N1—C18120.89 (15)C13—C12—H12119.7
O1—C1—N1121.27 (17)C11—C12—H12119.7
O1—C1—C2121.48 (17)C12—C13—C14119.54 (19)
N1—C1—C2117.22 (16)C12—C13—H13120.2
C3—C2—C1122.30 (16)C14—C13—H13120.2
C3—C2—C16123.02 (16)C13—C14—C15120.4 (2)
C1—C2—C16114.68 (15)C13—C14—H14119.8
C2—C3—C9118.67 (15)C15—C14—H14119.8
C2—C3—C10121.86 (15)C14—C15—C10120.67 (18)
C9—C3—C10119.42 (14)C14—C15—H15119.7
C5—C4—C9120.94 (17)C10—C15—H15119.7
C5—C4—H4119.5O2—C16—C17122.09 (19)
C9—C4—H4119.5O2—C16—C2120.83 (18)
C4—C5—C6120.58 (17)C17—C16—C2117.08 (18)
C4—C5—Cl1119.19 (15)C16—C17—H17A109.5
C6—C5—Cl1120.23 (14)C16—C17—H17B109.5
C7—C6—C5119.91 (17)H17A—C17—H17B109.5
C7—C6—H6120.0C16—C17—H17C109.5
C5—C6—H6120.0H17A—C17—H17C109.5
C6—C7—C8120.60 (17)H17B—C17—H17C109.5
C6—C7—H7119.7N1—C18—C19112.27 (16)
C8—C7—H7119.7N1—C18—H18A109.2
N1—C8—C7121.44 (16)C19—C18—H18A109.2
N1—C8—C9119.38 (15)N1—C18—H18B109.2
C7—C8—C9119.17 (16)C19—C18—H18B109.2
C4—C9—C8118.78 (16)H18A—C18—H18B107.9
C4—C9—C3121.17 (15)C18—C19—H19A109.5
C8—C9—C3120.01 (15)C18—C19—H19B109.5
C11—C10—C15118.71 (16)H19A—C19—H19B109.5
C11—C10—C3121.22 (16)C18—C19—H19C109.5
C15—C10—C3120.00 (15)H19A—C19—H19C109.5
C10—C11—C12120.13 (18)H19B—C19—H19C109.5
C10—C11—H11119.9
C8—N1—C1—O1179.22 (17)C7—C8—C9—C40.6 (2)
C18—N1—C1—O10.2 (3)N1—C8—C9—C32.1 (2)
C8—N1—C1—C22.6 (2)C7—C8—C9—C3177.21 (15)
C18—N1—C1—C2178.42 (15)C2—C3—C9—C4176.41 (16)
O1—C1—C2—C3177.17 (18)C10—C3—C9—C41.2 (2)
N1—C1—C2—C31.0 (3)C2—C3—C9—C81.3 (2)
O1—C1—C2—C162.7 (3)C10—C3—C9—C8178.92 (15)
N1—C1—C2—C16179.10 (16)C2—C3—C10—C11109.3 (2)
C1—C2—C3—C92.9 (2)C9—C3—C10—C1173.2 (2)
C16—C2—C3—C9177.26 (15)C2—C3—C10—C1573.9 (2)
C1—C2—C3—C10179.55 (16)C9—C3—C10—C15103.69 (19)
C16—C2—C3—C100.3 (3)C15—C10—C11—C120.6 (3)
C9—C4—C5—C61.2 (3)C3—C10—C11—C12177.48 (16)
C9—C4—C5—Cl1179.29 (13)C10—C11—C12—C130.7 (3)
C4—C5—C6—C71.0 (3)C11—C12—C13—C141.0 (3)
Cl1—C5—C6—C7179.43 (13)C12—C13—C14—C151.1 (3)
C5—C6—C7—C80.1 (3)C13—C14—C15—C101.0 (3)
C1—N1—C8—C7175.20 (16)C11—C10—C15—C140.7 (3)
C18—N1—C8—C73.8 (2)C3—C10—C15—C14177.66 (17)
C1—N1—C8—C94.1 (2)C3—C2—C16—O276.4 (2)
C18—N1—C8—C9176.91 (16)C1—C2—C16—O2103.5 (2)
C6—C7—C8—N1179.99 (15)C3—C2—C16—C17103.7 (2)
C6—C7—C8—C90.7 (3)C1—C2—C16—C1776.4 (2)
C5—C4—C9—C80.4 (2)C1—N1—C18—C1993.7 (2)
C5—C4—C9—C3178.10 (16)C8—N1—C18—C1985.3 (2)
N1—C8—C9—C4179.89 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.932.583.341 (2)139
C7—H7···O2ii0.932.703.340 (2)126
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC19H16ClNO2
Mr325.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)290
a, b, c (Å)9.6480 (8), 17.5756 (11), 9.9694 (7)
β (°) 103.245 (8)
V3)1645.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.21 × 0.16 × 0.15
Data collection
DiffractometerOxford Xcalibur Eos(Nova) CCD detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.925, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
21440, 3061, 1928
Rint0.052
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 0.95
No. of reflections3061
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.27

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CAMERON (Watkin et al., 1993), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.93002.58003.341 (2)139.00
C7—H7···O2ii0.93002.70203.340 (2)126.00
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y, z.
 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the FIST–DST program at SSCU, IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.

References

First citationBehrens, C. H. (1999). US Patent No. 4 942 163.  Google Scholar
First citationBroadhurst, M. D. (1991). US Patent No. 5 070 097.  Google Scholar
First citationBroadhurst, M. D., Michael, J. J., William, H. W. & Daryl, S. (2001). US Patent No. 6 235 787.  Google Scholar
First citationChao, Q., Deng, L., Shih, H., Leoni, L. M., Genini, D., Carson, D. A. & Cottam, H. B. (1999). J. Med. Chem. 2, 3860–3873.  Web of Science CrossRef Google Scholar
First citationCho, W., Kim, E., Park, I. Y., Jeong, E. Y., Kim, T. S., Le, T. N., Kim, D. & Leed, E. (2002). Bioorg. Med. Chem. 10, 2953–2961.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChoudhury, A. R. & Guru Row, T. N. (2006). CrystEngComm, 8, 265–274.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoudhury, A. R., Urs, U. K., Guru Row, T. N. & Nagarajan, K. (2002). J. Mol. Struct. 605, 71–77.  Web of Science CSD CrossRef CAS Google Scholar
First citationCobet, M. & Luckner, M. (1971). Phytochemistry, 10, 1031–1036.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHathwar, V. R., Prabakaran, K., Subashini, R., Manivel, P. & Khan, F. N. (2008). Acta Cryst. E64, o2295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKametani, T. (1968). The Chemistry of the Isoquinoline Alkaloids Tokyo: Hirokawa; Amsterdam: Elsevier.  Google Scholar
First citationLamberton, J. A. & Price, J. R. (1953). Aust. J. Chem. 6, 66–77.  CrossRef CAS Web of Science Google Scholar
First citationMajumdar, K. C. & Mukhopadhyay, P. P. (2003). Synthesis, pp. 97–100.  Web of Science CrossRef Google Scholar
First citationManivel, P., Hathwar, V. R., Nithya, P., Prabakaran, K. & Khan, F. N. (2009). Acta Cryst. E65, o137–o138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNayar, M. N. S., Sutar, C. V. & Bhan, M. K. (1971). Phytochemistry, 10, 2843–2844.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlisPro CCD and CrysAlisPro RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStorer, R., Young, D. W., Taylor, D. R. & Warner, J. M. (1973). Tetrahedron, 29, 1721–1723.  CrossRef CAS Web of Science Google Scholar
First citationWatkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationYang, Y., Yang, P., Zhang, C. & Wu, B. (2008). Anal. Sci. 24, x97–x98.  CAS Google Scholar
First citationYong, R. L., Hyuk, K., Wha, S. K., Kyung, R. M., Youngsoo, K. & Seung, H. L. (2001). Synthesis, pp. 1851–1855.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1800-o1801
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds