organic compounds
3-Acetyl-6-chloro-1-ethyl-4-phenylquinolin-2(1H)-one
aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, and bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
*Correspondence e-mail: nawaz_f@yahoo.co.in
In the title compound, C19H16ClNO2, the dihedral angle between the plane of the phenyl substituent and 3-acetylquinoline unit is 75.44 (5)°. The is stabilized by intermolecular C—H⋯O hydrogen bonds
Related literature
For general background to isoquinolines, see: Broadhurst et al. (2001); Behrens (1999); Broadhurst (1991); Chao et al. (1999); Cobet & Luckner (1971); Kametani (1968); Lamberton & Price (1953); Majumdar & Mukhopadhyay (2003); Nayar et al. (1971); Storer et al. (1973); Yong et al. (2001). For related crystal structures, see: Yang et al. (2008); Choudhury & Guru Row (2006); Choudhury et al. (2002); Hathwar et al. (2008); Cho et al. (2002); Manivel et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlisPro CCD (Oxford Diffraction, 2009); cell CrysAlisPro CCD; data reduction: CrysAlisPro RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809024830/bt2983sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809024830/bt2983Isup2.hkl
The solution of 3-acetyl-6-chloro-4-phenylquinolin-2(1H)-one in DMF was treated with ethylbromide and K2CO3 taken in DMF and stirred at RT for 4hr. The reaction contents were poured in crushed ice and solid otanined was filtered, dried. Single-crystals were obtained by recrystallization from petrol ether and ethylacetate solvent mixture.
All H atoms were positioned geometrically and refined using a riding model with bond lengths C—H are 0.93 Å (for aromatic), 0.97 Å (for methylene) and 0.96 Å (for methyl). The Uiso(H) = 1.5Ueq(C) for methyl and Uiso(H) = 1.2Ueq(C) for all other carbon bound H atoms.
Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell
CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).C19H16ClNO2 | F(000) = 680 |
Mr = 325.78 | Dx = 1.315 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1023 reflections |
a = 9.6480 (8) Å | θ = 1.7–20.6° |
b = 17.5756 (11) Å | µ = 0.24 mm−1 |
c = 9.9694 (7) Å | T = 290 K |
β = 103.245 (8)° | Block, colorless |
V = 1645.5 (2) Å3 | 0.21 × 0.16 × 0.15 mm |
Z = 4 |
Oxford Xcalibur Eos(Nova) CCD detector diffractometer | 3061 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1928 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
ω scans | θmax = 25.5°, θmin = 3.1° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | h = −11→11 |
Tmin = 0.925, Tmax = 0.965 | k = −21→21 |
21440 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 0.95 | w = 1/[σ2(Fo2) + (0.0592P)2] where P = (Fo2 + 2Fc2)/3 |
3061 reflections | (Δ/σ)max = 0.001 |
210 parameters | Δρmax = 0.16 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
C19H16ClNO2 | V = 1645.5 (2) Å3 |
Mr = 325.78 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.6480 (8) Å | µ = 0.24 mm−1 |
b = 17.5756 (11) Å | T = 290 K |
c = 9.9694 (7) Å | 0.21 × 0.16 × 0.15 mm |
β = 103.245 (8)° |
Oxford Xcalibur Eos(Nova) CCD detector diffractometer | 3061 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | 1928 reflections with I > 2σ(I) |
Tmin = 0.925, Tmax = 0.965 | Rint = 0.052 |
21440 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 0.95 | Δρmax = 0.16 e Å−3 |
3061 reflections | Δρmin = −0.27 e Å−3 |
210 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.51092 (6) | 1.05067 (3) | 0.20536 (6) | 0.0782 (2) | |
N1 | 0.35571 (15) | 0.79959 (8) | 0.53674 (14) | 0.0523 (4) | |
O1 | 0.18412 (15) | 0.72734 (8) | 0.59753 (16) | 0.0844 (5) | |
O2 | −0.11779 (16) | 0.83560 (9) | 0.49385 (18) | 0.0873 (5) | |
C1 | 0.2157 (2) | 0.78011 (11) | 0.52883 (19) | 0.0562 (5) | |
C2 | 0.10651 (18) | 0.82606 (9) | 0.43889 (18) | 0.0488 (4) | |
C3 | 0.13896 (17) | 0.88600 (9) | 0.36740 (17) | 0.0448 (4) | |
C4 | 0.32709 (19) | 0.96195 (10) | 0.29747 (17) | 0.0502 (4) | |
H4 | 0.2572 | 0.9916 | 0.2416 | 0.060* | |
C5 | 0.46684 (19) | 0.97641 (10) | 0.30238 (18) | 0.0527 (5) | |
C6 | 0.5726 (2) | 0.93221 (11) | 0.38284 (19) | 0.0585 (5) | |
H6 | 0.6677 | 0.9419 | 0.3845 | 0.070* | |
C7 | 0.53689 (19) | 0.87387 (10) | 0.46042 (18) | 0.0554 (5) | |
H7 | 0.6083 | 0.8443 | 0.5145 | 0.066* | |
C8 | 0.39405 (18) | 0.85855 (9) | 0.45869 (17) | 0.0467 (4) | |
C9 | 0.28714 (17) | 0.90307 (9) | 0.37541 (16) | 0.0434 (4) | |
C10 | 0.02678 (17) | 0.93280 (9) | 0.27678 (17) | 0.0460 (4) | |
C11 | −0.0010 (2) | 1.00621 (10) | 0.3121 (2) | 0.0602 (5) | |
H11 | 0.0483 | 1.0266 | 0.3956 | 0.072* | |
C12 | −0.1019 (2) | 1.04958 (11) | 0.2237 (2) | 0.0705 (6) | |
H12 | −0.1209 | 1.0988 | 0.2485 | 0.085* | |
C13 | −0.1740 (2) | 1.02063 (13) | 0.1000 (2) | 0.0743 (6) | |
H13 | −0.2407 | 1.0503 | 0.0402 | 0.089* | |
C14 | −0.1473 (2) | 0.94779 (13) | 0.0647 (2) | 0.0736 (6) | |
H14 | −0.1972 | 0.9276 | −0.0186 | 0.088* | |
C15 | −0.0470 (2) | 0.90426 (11) | 0.15166 (19) | 0.0607 (5) | |
H15 | −0.0287 | 0.8551 | 0.1260 | 0.073* | |
C16 | −0.0442 (2) | 0.80120 (11) | 0.4330 (2) | 0.0571 (5) | |
C17 | −0.0962 (2) | 0.73258 (12) | 0.3491 (2) | 0.0816 (7) | |
H17A | −0.1914 | 0.7210 | 0.3567 | 0.122* | |
H17B | −0.0350 | 0.6903 | 0.3820 | 0.122* | |
H17C | −0.0960 | 0.7422 | 0.2543 | 0.122* | |
C18 | 0.4651 (2) | 0.75412 (11) | 0.6307 (2) | 0.0636 (5) | |
H18A | 0.4254 | 0.7340 | 0.7044 | 0.076* | |
H18B | 0.5445 | 0.7868 | 0.6718 | 0.076* | |
C19 | 0.5185 (3) | 0.68935 (11) | 0.5580 (3) | 0.0872 (7) | |
H19A | 0.4404 | 0.6567 | 0.5174 | 0.131* | |
H19B | 0.5880 | 0.6609 | 0.6231 | 0.131* | |
H19C | 0.5613 | 0.7091 | 0.4873 | 0.131* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0683 (4) | 0.0909 (4) | 0.0817 (4) | −0.0115 (3) | 0.0305 (3) | 0.0206 (3) |
N1 | 0.0456 (9) | 0.0560 (9) | 0.0506 (9) | 0.0030 (7) | 0.0012 (7) | 0.0075 (7) |
O1 | 0.0660 (10) | 0.0864 (10) | 0.0946 (11) | −0.0072 (8) | 0.0056 (8) | 0.0460 (9) |
O2 | 0.0636 (10) | 0.0908 (11) | 0.1172 (13) | −0.0045 (8) | 0.0406 (10) | −0.0133 (9) |
C1 | 0.0508 (12) | 0.0585 (12) | 0.0568 (11) | −0.0002 (9) | 0.0069 (9) | 0.0104 (10) |
C2 | 0.0433 (10) | 0.0521 (10) | 0.0504 (10) | −0.0007 (8) | 0.0093 (8) | 0.0018 (9) |
C3 | 0.0434 (10) | 0.0505 (10) | 0.0398 (9) | 0.0019 (8) | 0.0081 (8) | 0.0000 (8) |
C4 | 0.0457 (11) | 0.0591 (11) | 0.0457 (10) | 0.0028 (9) | 0.0105 (8) | 0.0031 (9) |
C5 | 0.0511 (12) | 0.0613 (11) | 0.0480 (10) | −0.0042 (9) | 0.0158 (9) | −0.0025 (9) |
C6 | 0.0423 (11) | 0.0728 (13) | 0.0604 (12) | −0.0048 (10) | 0.0115 (9) | −0.0070 (10) |
C7 | 0.0426 (11) | 0.0650 (12) | 0.0545 (11) | 0.0032 (9) | 0.0030 (9) | −0.0006 (10) |
C8 | 0.0463 (11) | 0.0486 (10) | 0.0435 (10) | −0.0001 (8) | 0.0070 (8) | −0.0025 (8) |
C9 | 0.0419 (10) | 0.0467 (10) | 0.0407 (9) | 0.0003 (8) | 0.0076 (8) | −0.0009 (8) |
C10 | 0.0394 (10) | 0.0529 (11) | 0.0475 (10) | 0.0041 (8) | 0.0138 (8) | 0.0063 (8) |
C11 | 0.0623 (13) | 0.0567 (12) | 0.0617 (12) | 0.0062 (10) | 0.0146 (10) | −0.0015 (10) |
C12 | 0.0735 (15) | 0.0572 (12) | 0.0872 (16) | 0.0202 (11) | 0.0316 (13) | 0.0094 (12) |
C13 | 0.0627 (14) | 0.0896 (16) | 0.0722 (15) | 0.0289 (12) | 0.0186 (12) | 0.0254 (13) |
C14 | 0.0675 (14) | 0.0857 (15) | 0.0602 (13) | 0.0178 (12) | −0.0003 (11) | 0.0037 (12) |
C15 | 0.0607 (13) | 0.0625 (12) | 0.0547 (12) | 0.0122 (10) | 0.0045 (10) | 0.0005 (10) |
C16 | 0.0507 (12) | 0.0596 (12) | 0.0593 (12) | −0.0019 (10) | 0.0093 (10) | 0.0124 (10) |
C17 | 0.0712 (15) | 0.0829 (15) | 0.0854 (16) | −0.0190 (12) | 0.0067 (12) | −0.0039 (13) |
C18 | 0.0598 (13) | 0.0666 (13) | 0.0579 (12) | 0.0084 (10) | 0.0002 (10) | 0.0159 (10) |
C19 | 0.0915 (17) | 0.0672 (14) | 0.1005 (18) | 0.0208 (12) | 0.0172 (14) | 0.0104 (13) |
Cl1—C5 | 1.7344 (18) | C10—C15 | 1.381 (2) |
N1—C1 | 1.378 (2) | C11—C12 | 1.383 (3) |
N1—C8 | 1.396 (2) | C11—H11 | 0.9300 |
N1—C18 | 1.476 (2) | C12—C13 | 1.368 (3) |
O1—C1 | 1.232 (2) | C12—H12 | 0.9300 |
O2—C16 | 1.198 (2) | C13—C14 | 1.368 (3) |
C1—C2 | 1.460 (2) | C13—H13 | 0.9300 |
C2—C3 | 1.348 (2) | C14—C15 | 1.374 (3) |
C2—C16 | 1.507 (2) | C14—H14 | 0.9300 |
C3—C9 | 1.445 (2) | C15—H15 | 0.9300 |
C3—C10 | 1.489 (2) | C16—C17 | 1.488 (3) |
C4—C5 | 1.362 (2) | C17—H17A | 0.9600 |
C4—C9 | 1.400 (2) | C17—H17B | 0.9600 |
C4—H4 | 0.9300 | C17—H17C | 0.9600 |
C5—C6 | 1.383 (3) | C18—C19 | 1.502 (3) |
C6—C7 | 1.375 (2) | C18—H18A | 0.9700 |
C6—H6 | 0.9300 | C18—H18B | 0.9700 |
C7—C8 | 1.400 (2) | C19—H19A | 0.9600 |
C7—H7 | 0.9300 | C19—H19B | 0.9600 |
C8—C9 | 1.405 (2) | C19—H19C | 0.9600 |
C10—C11 | 1.380 (2) | ||
C1—N1—C8 | 122.28 (14) | C12—C11—H11 | 119.9 |
C1—N1—C18 | 116.83 (15) | C13—C12—C11 | 120.54 (19) |
C8—N1—C18 | 120.89 (15) | C13—C12—H12 | 119.7 |
O1—C1—N1 | 121.27 (17) | C11—C12—H12 | 119.7 |
O1—C1—C2 | 121.48 (17) | C12—C13—C14 | 119.54 (19) |
N1—C1—C2 | 117.22 (16) | C12—C13—H13 | 120.2 |
C3—C2—C1 | 122.30 (16) | C14—C13—H13 | 120.2 |
C3—C2—C16 | 123.02 (16) | C13—C14—C15 | 120.4 (2) |
C1—C2—C16 | 114.68 (15) | C13—C14—H14 | 119.8 |
C2—C3—C9 | 118.67 (15) | C15—C14—H14 | 119.8 |
C2—C3—C10 | 121.86 (15) | C14—C15—C10 | 120.67 (18) |
C9—C3—C10 | 119.42 (14) | C14—C15—H15 | 119.7 |
C5—C4—C9 | 120.94 (17) | C10—C15—H15 | 119.7 |
C5—C4—H4 | 119.5 | O2—C16—C17 | 122.09 (19) |
C9—C4—H4 | 119.5 | O2—C16—C2 | 120.83 (18) |
C4—C5—C6 | 120.58 (17) | C17—C16—C2 | 117.08 (18) |
C4—C5—Cl1 | 119.19 (15) | C16—C17—H17A | 109.5 |
C6—C5—Cl1 | 120.23 (14) | C16—C17—H17B | 109.5 |
C7—C6—C5 | 119.91 (17) | H17A—C17—H17B | 109.5 |
C7—C6—H6 | 120.0 | C16—C17—H17C | 109.5 |
C5—C6—H6 | 120.0 | H17A—C17—H17C | 109.5 |
C6—C7—C8 | 120.60 (17) | H17B—C17—H17C | 109.5 |
C6—C7—H7 | 119.7 | N1—C18—C19 | 112.27 (16) |
C8—C7—H7 | 119.7 | N1—C18—H18A | 109.2 |
N1—C8—C7 | 121.44 (16) | C19—C18—H18A | 109.2 |
N1—C8—C9 | 119.38 (15) | N1—C18—H18B | 109.2 |
C7—C8—C9 | 119.17 (16) | C19—C18—H18B | 109.2 |
C4—C9—C8 | 118.78 (16) | H18A—C18—H18B | 107.9 |
C4—C9—C3 | 121.17 (15) | C18—C19—H19A | 109.5 |
C8—C9—C3 | 120.01 (15) | C18—C19—H19B | 109.5 |
C11—C10—C15 | 118.71 (16) | H19A—C19—H19B | 109.5 |
C11—C10—C3 | 121.22 (16) | C18—C19—H19C | 109.5 |
C15—C10—C3 | 120.00 (15) | H19A—C19—H19C | 109.5 |
C10—C11—C12 | 120.13 (18) | H19B—C19—H19C | 109.5 |
C10—C11—H11 | 119.9 | ||
C8—N1—C1—O1 | 179.22 (17) | C7—C8—C9—C4 | −0.6 (2) |
C18—N1—C1—O1 | 0.2 (3) | N1—C8—C9—C3 | −2.1 (2) |
C8—N1—C1—C2 | −2.6 (2) | C7—C8—C9—C3 | 177.21 (15) |
C18—N1—C1—C2 | 178.42 (15) | C2—C3—C9—C4 | 176.41 (16) |
O1—C1—C2—C3 | 177.17 (18) | C10—C3—C9—C4 | −1.2 (2) |
N1—C1—C2—C3 | −1.0 (3) | C2—C3—C9—C8 | −1.3 (2) |
O1—C1—C2—C16 | −2.7 (3) | C10—C3—C9—C8 | −178.92 (15) |
N1—C1—C2—C16 | 179.10 (16) | C2—C3—C10—C11 | 109.3 (2) |
C1—C2—C3—C9 | 2.9 (2) | C9—C3—C10—C11 | −73.2 (2) |
C16—C2—C3—C9 | −177.26 (15) | C2—C3—C10—C15 | −73.9 (2) |
C1—C2—C3—C10 | −179.55 (16) | C9—C3—C10—C15 | 103.69 (19) |
C16—C2—C3—C10 | 0.3 (3) | C15—C10—C11—C12 | 0.6 (3) |
C9—C4—C5—C6 | 1.2 (3) | C3—C10—C11—C12 | 177.48 (16) |
C9—C4—C5—Cl1 | −179.29 (13) | C10—C11—C12—C13 | −0.7 (3) |
C4—C5—C6—C7 | −1.0 (3) | C11—C12—C13—C14 | 1.0 (3) |
Cl1—C5—C6—C7 | 179.43 (13) | C12—C13—C14—C15 | −1.1 (3) |
C5—C6—C7—C8 | 0.1 (3) | C13—C14—C15—C10 | 1.0 (3) |
C1—N1—C8—C7 | −175.20 (16) | C11—C10—C15—C14 | −0.7 (3) |
C18—N1—C8—C7 | 3.8 (2) | C3—C10—C15—C14 | −177.66 (17) |
C1—N1—C8—C9 | 4.1 (2) | C3—C2—C16—O2 | −76.4 (2) |
C18—N1—C8—C9 | −176.91 (16) | C1—C2—C16—O2 | 103.5 (2) |
C6—C7—C8—N1 | −179.99 (15) | C3—C2—C16—C17 | 103.7 (2) |
C6—C7—C8—C9 | 0.7 (3) | C1—C2—C16—C17 | −76.4 (2) |
C5—C4—C9—C8 | −0.4 (2) | C1—N1—C18—C19 | 93.7 (2) |
C5—C4—C9—C3 | −178.10 (16) | C8—N1—C18—C19 | −85.3 (2) |
N1—C8—C9—C4 | −179.89 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15···O1i | 0.93 | 2.58 | 3.341 (2) | 139 |
C7—H7···O2ii | 0.93 | 2.70 | 3.340 (2) | 126 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C19H16ClNO2 |
Mr | 325.78 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 290 |
a, b, c (Å) | 9.6480 (8), 17.5756 (11), 9.9694 (7) |
β (°) | 103.245 (8) |
V (Å3) | 1645.5 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.24 |
Crystal size (mm) | 0.21 × 0.16 × 0.15 |
Data collection | |
Diffractometer | Oxford Xcalibur Eos(Nova) CCD detector diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.925, 0.965 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21440, 3061, 1928 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.106, 0.95 |
No. of reflections | 3061 |
No. of parameters | 210 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.16, −0.27 |
Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CAMERON (Watkin et al., 1993), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15···O1i | 0.9300 | 2.5800 | 3.341 (2) | 139.00 |
C7—H7···O2ii | 0.9300 | 2.7020 | 3.340 (2) | 126.00 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x+1, y, z. |
Acknowledgements
We thank the Department of Science and Technology, India, for use of the CCD facility set up under the FIST–DST program at SSCU, IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.
References
Behrens, C. H. (1999). US Patent No. 4 942 163. Google Scholar
Broadhurst, M. D. (1991). US Patent No. 5 070 097. Google Scholar
Broadhurst, M. D., Michael, J. J., William, H. W. & Daryl, S. (2001). US Patent No. 6 235 787. Google Scholar
Chao, Q., Deng, L., Shih, H., Leoni, L. M., Genini, D., Carson, D. A. & Cottam, H. B. (1999). J. Med. Chem. 2, 3860–3873. Web of Science CrossRef Google Scholar
Cho, W., Kim, E., Park, I. Y., Jeong, E. Y., Kim, T. S., Le, T. N., Kim, D. & Leed, E. (2002). Bioorg. Med. Chem. 10, 2953–2961. Web of Science CSD CrossRef PubMed CAS Google Scholar
Choudhury, A. R. & Guru Row, T. N. (2006). CrystEngComm, 8, 265–274. Web of Science CSD CrossRef CAS Google Scholar
Choudhury, A. R., Urs, U. K., Guru Row, T. N. & Nagarajan, K. (2002). J. Mol. Struct. 605, 71–77. Web of Science CSD CrossRef CAS Google Scholar
Cobet, M. & Luckner, M. (1971). Phytochemistry, 10, 1031–1036. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hathwar, V. R., Prabakaran, K., Subashini, R., Manivel, P. & Khan, F. N. (2008). Acta Cryst. E64, o2295. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kametani, T. (1968). The Chemistry of the Isoquinoline Alkaloids Tokyo: Hirokawa; Amsterdam: Elsevier. Google Scholar
Lamberton, J. A. & Price, J. R. (1953). Aust. J. Chem. 6, 66–77. CrossRef CAS Web of Science Google Scholar
Majumdar, K. C. & Mukhopadhyay, P. P. (2003). Synthesis, pp. 97–100. Web of Science CrossRef Google Scholar
Manivel, P., Hathwar, V. R., Nithya, P., Prabakaran, K. & Khan, F. N. (2009). Acta Cryst. E65, o137–o138. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nayar, M. N. S., Sutar, C. V. & Bhan, M. K. (1971). Phytochemistry, 10, 2843–2844. CrossRef CAS Web of Science Google Scholar
Oxford Diffraction (2009). CrysAlisPro CCD and CrysAlisPro RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Storer, R., Young, D. W., Taylor, D. R. & Warner, J. M. (1973). Tetrahedron, 29, 1721–1723. CrossRef CAS Web of Science Google Scholar
Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England. Google Scholar
Yang, Y., Yang, P., Zhang, C. & Wu, B. (2008). Anal. Sci. 24, x97–x98. CAS Google Scholar
Yong, R. L., Hyuk, K., Wha, S. K., Kyung, R. M., Youngsoo, K. & Seung, H. L. (2001). Synthesis, pp. 1851–1855. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
2-quinolinone is an important biosynthetic (Cobet et al., 1971) and synthetic (Majumdar et al., 2003; Yong et al., 2001) precursor of quinoline alkaloids. Methylated compounds like 4-methoxy-1-methyl-2-quinolinone, folimine, 4,6-dimethoxy-1-methyl-2-quinolinone and 4,7,8-trimethoxy-1-methyl-2-quinolinone are widely distributed in nature (Nayar et al., 1971; Lamberton et al., 1953; Storer et al., 1973). Due to the importance of these derivatives (Broadhurst et al.; 2001; Behrens, 1999; Broadhurst, 1991; Chao et al., 1999; Kametani et al., 1968) and in continuous of our interest in quinolines and isoquinolines (Choudhury & Guru Row 2006; Choudhury et al., 2002; Hathwar et al., 2008; Cho et al., 2002; Manivel et al., 2009) we report here crystal structure of the title compound.
All the bond lengths are within normal ranges in the title compound. The two carbonyl O atoms participate in intermolecular C—H···O hydrogen bonding resulting the close packing of the crystal structure in the unit cell (Figure 2).