metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[aqua­(pyrazino[2,3-f][1,10]phenanthroline)cadium(II)]-μ-4,4′-ethyl­enedibenzoato] N,N-di­methyl­formamide hemisolvate]

aDepartment of Ophthalmology, the Second Hospital of Jilin University, Changchun 130041, People's Republic of China, bDepartment of Vascular Surgery, the China–Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China, cDepartment of Orthopedics, the China–Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China, and dDepartment of Gynaecology, the Second Hospital of Jilin University, Changchun 130041, People's Republic of China
*Correspondence e-mail: li_yp2002@yahoo.com.cn

(Received 26 June 2009; accepted 26 June 2009; online 4 July 2009)

In the title compound, [Cd(C16H10O4)(C14H8N4)(H2O)]·0.5C3H7NO, the CdII atom is six-coordinated by two N atoms from one pyrazino[2,3-f][1,10]phenanthroline ligand, three carboxyl­ate O atoms from two different 4,4′-ethyl­enedibenzoate ligands, and one water mol­ecule in a distorted octa­hedral environment. The two 4,4′-ethyl­enedibenzoate dianions are located on inversion centres bridging two neighboring CdII centres. O—H⋯O hydrogen-bonding inter­actions further stabilize the crystal structure. The DMF molecule is equally disordered about a center of inversion.

Related literature

For general background and related structures, see: Wang et al. (2008[Wang, X.-Y., Wang, J.-J. & Ng, S. W. (2008). Acta Cryst. C64, m401-m404.]); Yang et al. (2007[Yang, J., Ma, J.-F., Liu, Y.-Y., Ma, J.-C. & Batten, S. R. (2007). Inorg. Chem. 46, 6542-6555.]); Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]); Qiao et al. (2008[Qiao, Q., Zhao, Y.-J. & Tang, T.-D. (2008). Acta Cryst. C64, m336-m338.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C16H10O4)(C14H8N4)(H2O)]·0.5C3H7NO

  • Mr = 665.45

  • Triclinic, [P \overline 1]

  • a = 11.4348 (5) Å

  • b = 11.5167 (4) Å

  • c = 11.7530 (5) Å

  • α = 84.654 (3)°

  • β = 69.154 (4)°

  • γ = 84.027 (3)°

  • V = 1435.97 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 293 K

  • 0.30 × 0.28 × 0.16 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.778, Tmax = 0.801 (expected range = 0.853–0.878)

  • 14619 measured reflections

  • 5828 independent reflections

  • 3930 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.056

  • S = 0.86

  • 5828 reflections

  • 416 parameters

  • 33 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O2 0.844 (10) 1.854 (13) 2.655 (3) 158 (3)
O5—H5B⋯O4i 0.843 (10) 1.881 (12) 2.713 (3) 169 (3)
Symmetry code: (i) -x+2, -y+1, -z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Current interest in polymeric coordination networks is rapidly expanding not only for their potential applications in host–guest chemistry, ion exchange, gas storage, and nonlinear optics, but also for their intriguing variety of topologies (Batten & Robson, 1998). In this regard, chain structures have received much attention in coordination chemistry and materials chemistry. An appropriate flexible bidentate organic acid bridge could be useful in the formation of chains in the presence of secondary ligands, such as 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen) (Wang et al., 2008). The N atoms from the secondary ligand may occupy two coordination positions of the metal ions. The rest of the coordination positions are available for other carboxylate ligands to allow the formation of a chain. The use of aromatic carboxylic acids in the syntheses of chain coordination polymers has aroused enormous interest owing to their versatile coordination modes and varieties of structural conformations. So far, aromatic multicarboxylate ligands, such as 1,2-benzenedicarboxylic acid, 1,3-benzenedicarboxylic acid and 1,4-benzenedicarboxylic acid, have been widely used to construct chain structures with interesting properties (Qiao et al., 2008). In this regard, 4,4'-ethylenedibenzoatic acid (H2bpea) is also a good ligand in coordination chemistry because of its strong coordination ability and versatile coordination modes, so much attention has been paid to it in recent decades. On the other hand, the phen molecule, as one type of important organic ligand, has been widely utilized in the construction of chain structure complexes. An important derivative of phen, pyrazino[2,3-f][1,10]phenanthroline (pyphen) has been widely used to synthesize various Ru(II) complexes in order to recognize the secondary structure of DNA (Qiao et al., 2008). However, the complexes constructed by carboxylate ligand and pyphen ligand have rarely been documented (Yang et al., 2007). In the present study, we selected H2bpea as a linker and pyphen as a secondary chelating ligand, forming a unique zigzag chain coordination polymer [Cd(pyphen)(bpea)(H2O)].0.5DMF (DMF = dimethylformamide).

As shown in Fig. 1, each CdII atom is six-coordinated by two N atoms from one pyphen, three carboxylate O atoms from two different bpea ligands, and one water molecule in a distorted octahedral sphere. The two bpea dianions are situated across inversion centres. The bpea dianions bridge two neighboring CdII centres, yielding a one-dimensional chain (Fig. 2). The OH···Ocarboxylate H-bonding interactions further stabilize the structure of (I) (Table 1).

Related literature top

For general background and related structures, see: Wang et al. (2008); Yang et al. (2007); Batten & Robson (1998); Qiao et al. (2008).

Experimental top

A mixture of 4,4'-ethylenedibenzoatic acid (0.5 mmol), pyrazino[2,3-f][1,10]phenanthroline (0.5 mmol), NaOH (1 mmol) and CdCl2.2H2O (0.5 mmol) was suspended in deionized water (12 ml) and sealed in a 20-ml Teflon-lined autoclave. Upon heating at 433 K for one week, the autoclave was slowly cooled to room temperature. The crystals were collected, washed with deionized water, and dried.

Refinement top

H atoms bonded to C were positioned geometrically (C—H = 0.93 Å) and refined as riding, with Uiso(H)=1.2Ueq(C). The water H atoms were located in a difference Fourier map, and were refined with distance restraints of O–H 0.85±0.01 and H···H 1.39±0.01 Å. Their displacement parameters were freely refined.

The DMF molecule is disordered about a center-of-inversion. The C–O length was restrained to 1.25±0.01 Å; the NC(carbonyl) length was restrained to 1.35±0.01 Å and the oher two N–C lengths to 1.45±0.01 Å. The non-H atoms were restrained to lie on a common plane. The anisotropic temperature factors were restrained to be nearly isotropic.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg; 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 20% probability level (symmetry operations i: 3 - x, -y, 1 - z; ii: 3 - x, 2 - y, -z).
[Figure 2] Fig. 2. View of the zigzag chain of the title compound.
catena-Poly[[[aqua(pyrazino[2,3- f][1,10]phenanthroline)cadium(II)]-µ-4,4'-ethylenedibenzoato] N,N-dimethylformamide hemisolvate] top
Crystal data top
[Cd(C16H10O4)(C14H8N4)(H2O)]·0.5C3H7NOZ = 2
Mr = 665.45F(000) = 672
Triclinic, P1Dx = 1.539 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.4348 (5) ÅCell parameters from 5828 reflections
b = 11.5167 (4) Åθ = 3.1–26.4°
c = 11.7530 (5) ŵ = 0.81 mm1
α = 84.654 (3)°T = 293 K
β = 69.154 (4)°Block, pale yellow
γ = 84.027 (3)°0.30 × 0.28 × 0.16 mm
V = 1435.97 (10) Å3
Data collection top
Bruker SMART APEX
diffractometer
5828 independent reflections
Radiation source: fine-focus sealed tube3930 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 26.4°, θmin = 4.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.778, Tmax = 0.801k = 1414
14619 measured reflectionsl = 1410
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 0.86 w = 1/[σ2(Fo2) + (0.0206P)2]
where P = (Fo2 + 2Fc2)/3
5828 reflections(Δ/σ)max = 0.001
416 parametersΔρmax = 0.46 e Å3
33 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Cd(C16H10O4)(C14H8N4)(H2O)]·0.5C3H7NOγ = 84.027 (3)°
Mr = 665.45V = 1435.97 (10) Å3
Triclinic, P1Z = 2
a = 11.4348 (5) ÅMo Kα radiation
b = 11.5167 (4) ŵ = 0.81 mm1
c = 11.7530 (5) ÅT = 293 K
α = 84.654 (3)°0.30 × 0.28 × 0.16 mm
β = 69.154 (4)°
Data collection top
Bruker SMART APEX
diffractometer
5828 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3930 reflections with I > 2σ(I)
Tmin = 0.778, Tmax = 0.801Rint = 0.047
14619 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03533 restraints
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 0.86Δρmax = 0.46 e Å3
5828 reflectionsΔρmin = 0.32 e Å3
416 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.930477 (18)0.475704 (19)0.26922 (2)0.03672 (8)
O11.01917 (18)0.33906 (17)0.36539 (18)0.0514 (5)
O21.1531 (2)0.2867 (2)0.1867 (2)0.0900 (9)
O31.04743 (18)0.62445 (17)0.27400 (18)0.0524 (5)
O41.06257 (16)0.58849 (16)0.08946 (17)0.0457 (5)
O50.94576 (19)0.33849 (18)0.13394 (19)0.0488 (5)
N10.77160 (18)0.51028 (17)0.45663 (19)0.0347 (5)
N20.3668 (2)0.7125 (2)0.6508 (2)0.0472 (6)
N30.3523 (2)0.7770 (2)0.4180 (2)0.0495 (6)
N40.75597 (19)0.57195 (19)0.2329 (2)0.0389 (5)
C11.1176 (3)0.2852 (3)0.2991 (3)0.0479 (8)
C21.1979 (2)0.2147 (2)0.3624 (3)0.0388 (7)
C31.1667 (3)0.2076 (2)0.4866 (3)0.0441 (7)
H31.09150.24440.53510.053*
C41.2459 (3)0.1462 (2)0.5410 (3)0.0444 (7)
H41.22350.14290.62540.053*
C51.3589 (2)0.0892 (2)0.4706 (3)0.0373 (7)
C61.3878 (3)0.0959 (2)0.3464 (3)0.0478 (8)
H61.46190.05760.29760.057*
C71.3099 (3)0.1580 (2)0.2922 (3)0.0491 (8)
H71.33270.16200.20770.059*
C81.4441 (2)0.0270 (2)0.5287 (3)0.0420 (7)
H81.41760.02530.61340.050*
C91.0938 (2)0.6436 (2)0.1608 (3)0.0372 (7)
C101.1894 (2)0.7311 (2)0.1113 (3)0.0388 (7)
C111.2109 (3)0.8027 (3)0.1886 (3)0.0508 (8)
H111.16470.79620.27160.061*
C121.2997 (3)0.8839 (3)0.1446 (3)0.0521 (8)
H121.31210.93180.19820.063*
C131.3703 (3)0.8948 (3)0.0222 (3)0.0477 (8)
C141.3477 (3)0.8228 (3)0.0547 (3)0.0625 (9)
H141.39310.82950.13790.075*
C151.2593 (3)0.7415 (3)0.0101 (3)0.0583 (9)
H151.24710.69320.06340.070*
C161.4677 (3)0.9788 (3)0.0278 (3)0.0557 (8)
H161.48511.00470.10900.067*
C170.7813 (3)0.4793 (2)0.5637 (3)0.0411 (7)
H170.85320.43490.56630.049*
C180.6894 (3)0.5096 (3)0.6725 (3)0.0495 (8)
H180.69940.48600.74650.059*
C190.5837 (3)0.5748 (2)0.6695 (3)0.0460 (7)
H190.52070.59570.74180.055*
C200.5706 (2)0.6099 (2)0.5580 (2)0.0358 (6)
C210.6675 (2)0.5753 (2)0.4523 (2)0.0317 (6)
C220.4609 (2)0.6801 (2)0.5460 (3)0.0378 (7)
C230.2712 (3)0.7744 (3)0.6344 (3)0.0588 (9)
H230.20470.79870.70270.071*
C240.2637 (3)0.8057 (3)0.5203 (3)0.0553 (9)
H240.19210.84940.51620.066*
C250.4540 (2)0.7124 (2)0.4320 (3)0.0376 (7)
C260.5547 (2)0.6766 (2)0.3223 (3)0.0375 (7)
C270.6604 (2)0.6090 (2)0.3322 (2)0.0335 (6)
C280.5517 (3)0.7060 (3)0.2057 (3)0.0547 (8)
H280.48350.75160.19560.066*
C290.6494 (3)0.6677 (3)0.1055 (3)0.0624 (9)
H290.64830.68610.02720.075*
C300.7495 (3)0.6011 (3)0.1242 (3)0.0533 (8)
H300.81580.57540.05640.064*
O61.2305 (11)0.0866 (9)0.8336 (11)0.226 (5)0.50
N51.0516 (10)0.0318 (7)0.9847 (10)0.114 (3)0.50
C311.1577 (12)0.0819 (9)0.9420 (12)0.158 (5)0.50
H311.18100.11750.99770.190*0.50
C321.0130 (11)0.0250 (9)0.8965 (10)0.109 (5)0.50
H32A1.05910.00370.81500.164*0.50
H32B0.92480.00730.91330.164*0.50
H32C1.03030.10820.90420.164*0.50
C330.969 (2)0.0280 (19)1.1125 (16)0.35 (2)0.50
H33A1.01210.05481.16120.523*0.50
H33B0.94810.05081.13930.523*0.50
H33C0.89440.07771.12110.523*0.50
H5A1.0175 (16)0.312 (3)0.134 (3)0.085 (13)*
H5B0.944 (3)0.352 (3)0.0627 (14)0.083 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03009 (12)0.03969 (13)0.04059 (13)0.00105 (8)0.01371 (9)0.00032 (9)
O10.0430 (12)0.0577 (13)0.0521 (13)0.0151 (10)0.0206 (11)0.0016 (11)
O20.0628 (15)0.150 (2)0.0472 (16)0.0408 (15)0.0228 (13)0.0055 (15)
O30.0556 (13)0.0691 (14)0.0373 (13)0.0267 (10)0.0190 (10)0.0089 (10)
O40.0500 (12)0.0505 (12)0.0401 (12)0.0199 (10)0.0162 (10)0.0002 (10)
O50.0511 (14)0.0560 (14)0.0458 (14)0.0062 (11)0.0242 (11)0.0029 (11)
N10.0326 (13)0.0345 (13)0.0399 (14)0.0057 (10)0.0157 (11)0.0003 (10)
N20.0421 (15)0.0447 (15)0.0472 (16)0.0022 (12)0.0063 (13)0.0044 (12)
N30.0364 (14)0.0457 (15)0.0652 (18)0.0036 (12)0.0176 (14)0.0050 (13)
N40.0318 (13)0.0485 (15)0.0339 (14)0.0001 (11)0.0103 (11)0.0016 (11)
C10.0404 (19)0.056 (2)0.050 (2)0.0040 (16)0.0224 (17)0.0034 (16)
C20.0393 (17)0.0340 (16)0.0466 (19)0.0001 (13)0.0211 (15)0.0018 (13)
C30.0351 (16)0.0457 (18)0.049 (2)0.0063 (13)0.0146 (15)0.0013 (15)
C40.0460 (18)0.0463 (18)0.0420 (18)0.0004 (14)0.0187 (15)0.0008 (14)
C50.0386 (16)0.0303 (15)0.0479 (19)0.0004 (13)0.0226 (15)0.0007 (13)
C60.0413 (17)0.0522 (19)0.048 (2)0.0141 (14)0.0171 (15)0.0078 (15)
C70.0496 (19)0.056 (2)0.0414 (18)0.0104 (16)0.0202 (16)0.0015 (15)
C80.0468 (17)0.0392 (18)0.0450 (18)0.0010 (14)0.0243 (15)0.0029 (14)
C90.0353 (16)0.0387 (17)0.0393 (18)0.0025 (13)0.0163 (14)0.0014 (14)
C100.0373 (16)0.0454 (18)0.0372 (17)0.0098 (13)0.0165 (15)0.0014 (14)
C110.0504 (19)0.062 (2)0.0394 (18)0.0161 (16)0.0134 (15)0.0024 (16)
C120.0519 (19)0.061 (2)0.047 (2)0.0169 (17)0.0178 (17)0.0055 (16)
C130.0421 (18)0.053 (2)0.048 (2)0.0132 (15)0.0154 (16)0.0050 (16)
C140.063 (2)0.083 (3)0.0411 (19)0.0369 (19)0.0091 (17)0.0048 (18)
C150.058 (2)0.068 (2)0.051 (2)0.0239 (18)0.0148 (18)0.0103 (17)
C160.059 (2)0.065 (2)0.044 (2)0.0200 (17)0.0156 (15)0.0007 (16)
C170.0441 (17)0.0397 (17)0.0461 (19)0.0009 (14)0.0252 (16)0.0001 (14)
C180.058 (2)0.058 (2)0.0383 (19)0.0077 (17)0.0253 (17)0.0011 (15)
C190.0466 (18)0.0502 (19)0.0364 (18)0.0100 (15)0.0068 (15)0.0033 (14)
C200.0371 (16)0.0332 (16)0.0359 (17)0.0075 (13)0.0102 (14)0.0004 (13)
C210.0304 (15)0.0281 (14)0.0400 (17)0.0076 (12)0.0161 (13)0.0028 (12)
C220.0349 (16)0.0313 (16)0.0449 (18)0.0091 (13)0.0084 (14)0.0058 (13)
C230.0406 (19)0.051 (2)0.067 (3)0.0019 (16)0.0037 (17)0.0104 (18)
C240.0383 (19)0.049 (2)0.076 (3)0.0022 (15)0.0183 (19)0.0041 (18)
C250.0282 (15)0.0355 (16)0.0485 (19)0.0032 (13)0.0120 (14)0.0044 (14)
C260.0322 (15)0.0382 (16)0.0427 (18)0.0033 (13)0.0147 (14)0.0017 (13)
C270.0290 (15)0.0317 (15)0.0412 (17)0.0032 (12)0.0136 (14)0.0027 (13)
C280.0457 (19)0.066 (2)0.054 (2)0.0096 (16)0.0237 (17)0.0025 (17)
C290.056 (2)0.090 (3)0.0390 (19)0.0112 (19)0.0206 (17)0.0050 (18)
C300.0432 (18)0.072 (2)0.0390 (19)0.0051 (16)0.0101 (15)0.0017 (16)
O60.254 (8)0.250 (8)0.182 (8)0.014 (7)0.095 (7)0.010 (7)
N50.108 (8)0.097 (7)0.144 (9)0.035 (5)0.057 (8)0.028 (7)
C310.185 (9)0.164 (9)0.127 (8)0.004 (8)0.059 (7)0.004 (7)
C320.103 (7)0.079 (6)0.123 (8)0.035 (5)0.022 (6)0.016 (5)
C330.35 (2)0.34 (2)0.35 (3)0.003 (10)0.117 (12)0.023 (10)
Geometric parameters (Å, º) top
Cd1—O12.2215 (18)C12—H120.9300
Cd1—O52.295 (2)C13—C141.385 (4)
Cd1—O32.2966 (18)C13—C161.475 (4)
Cd1—N42.335 (2)C14—C151.379 (4)
Cd1—N12.340 (2)C14—H140.9300
Cd1—O42.4613 (18)C15—H150.9300
Cd1—C92.729 (3)C16—C16ii1.298 (5)
O1—C11.256 (3)C16—H160.9300
O2—C11.234 (3)C17—C181.383 (4)
O3—C91.252 (3)C17—H170.9300
O4—C91.262 (3)C18—C191.364 (4)
O5—H5A0.844 (10)C18—H180.9300
O5—H5B0.843 (10)C19—C201.390 (4)
N1—C171.316 (3)C19—H190.9300
N1—C211.353 (3)C20—C211.396 (4)
N2—C231.305 (4)C20—C221.463 (4)
N2—C221.369 (3)C21—C271.457 (3)
N3—C241.311 (4)C22—C251.385 (4)
N3—C251.367 (3)C23—C241.385 (4)
N4—C301.315 (3)C23—H230.9300
N4—C271.352 (3)C24—H240.9300
C1—C21.509 (4)C25—C261.449 (4)
C2—C31.371 (4)C26—C281.392 (4)
C2—C71.386 (4)C26—C271.403 (3)
C3—C41.386 (4)C28—C291.374 (4)
C3—H30.9300C28—H280.9300
C4—C51.396 (4)C29—C301.383 (4)
C4—H40.9300C29—H290.9300
C5—C61.374 (4)C30—H300.9300
C5—C81.472 (3)O6—C311.249 (9)
C6—C71.377 (4)N5—C311.310 (9)
C6—H60.9300N5—C331.461 (10)
C7—H70.9300N5—C321.486 (9)
C8—C8i1.332 (5)C31—H310.9300
C8—H80.9300C32—H32A0.9600
C9—C101.489 (4)C32—H32B0.9600
C10—C151.366 (4)C32—H32C0.9600
C10—C111.381 (4)C33—H33A0.9600
C11—C121.381 (4)C33—H33B0.9600
C11—H110.9300C33—H33C0.9600
C12—C131.378 (4)
O1—Cd1—O587.36 (7)C11—C10—C9120.2 (3)
O1—Cd1—O396.57 (7)C10—C11—C12121.1 (3)
O5—Cd1—O3135.60 (7)C10—C11—H11119.4
O1—Cd1—N4152.12 (8)C12—C11—H11119.4
O5—Cd1—N490.76 (8)C13—C12—C11120.7 (3)
O3—Cd1—N4104.04 (7)C13—C12—H12119.7
O1—Cd1—N188.42 (7)C11—C12—H12119.7
O5—Cd1—N1128.74 (7)C12—C13—C14117.8 (3)
O3—Cd1—N195.62 (7)C12—C13—C16122.3 (3)
N4—Cd1—N171.24 (7)C14—C13—C16120.0 (3)
O1—Cd1—O4119.82 (7)C15—C14—C13121.2 (3)
O5—Cd1—O485.14 (7)C15—C14—H14119.4
O3—Cd1—O454.65 (6)C13—C14—H14119.4
N4—Cd1—O487.67 (7)C10—C15—C14120.8 (3)
N1—Cd1—O4138.68 (7)C10—C15—H15119.6
O1—Cd1—C9109.35 (7)C14—C15—H15119.6
O5—Cd1—C9110.65 (8)C16ii—C16—C13128.0 (4)
O3—Cd1—C927.14 (7)C16ii—C16—H16116.0
N4—Cd1—C997.33 (8)C13—C16—H16116.0
N1—Cd1—C9118.85 (8)N1—C17—C18122.9 (2)
O4—Cd1—C927.52 (7)N1—C17—H17118.5
C1—O1—Cd1115.60 (19)C18—C17—H17118.5
C9—O3—Cd196.06 (16)C19—C18—C17118.9 (3)
C9—O4—Cd188.15 (16)C19—C18—H18120.5
Cd1—O5—H5A92 (2)C17—C18—H18120.5
Cd1—O5—H5B127 (2)C18—C19—C20119.7 (3)
H5A—O5—H5B112.0 (17)C18—C19—H19120.1
C17—N1—C21118.8 (2)C20—C19—H19120.1
C17—N1—Cd1124.57 (17)C19—C20—C21117.8 (2)
C21—N1—Cd1116.43 (16)C19—C20—C22123.5 (3)
C23—N2—C22114.9 (3)C21—C20—C22118.7 (2)
C24—N3—C25114.6 (3)N1—C21—C20121.8 (2)
C30—N4—C27118.8 (2)N1—C21—C27117.3 (2)
C30—N4—Cd1124.95 (18)C20—C21—C27120.9 (2)
C27—N4—Cd1115.94 (16)N2—C22—C25121.8 (2)
O2—C1—O1124.8 (3)N2—C22—C20117.7 (2)
O2—C1—C2118.1 (3)C25—C22—C20120.5 (2)
O1—C1—C2117.0 (3)N2—C23—C24123.4 (3)
C3—C2—C7118.5 (2)N2—C23—H23118.3
C3—C2—C1122.6 (3)C24—C23—H23118.3
C7—C2—C1118.8 (3)N3—C24—C23123.5 (3)
C2—C3—C4120.9 (3)N3—C24—H24118.2
C2—C3—H3119.6C23—C24—H24118.2
C4—C3—H3119.6N3—C25—C22121.8 (3)
C3—C4—C5120.8 (3)N3—C25—C26117.4 (2)
C3—C4—H4119.6C22—C25—C26120.8 (2)
C5—C4—H4119.6C28—C26—C27117.7 (3)
C6—C5—C4117.5 (2)C28—C26—C25122.9 (2)
C6—C5—C8122.0 (2)C27—C26—C25119.4 (2)
C4—C5—C8120.5 (3)N4—C27—C26121.7 (2)
C5—C6—C7121.7 (3)N4—C27—C21118.5 (2)
C5—C6—H6119.1C26—C27—C21119.8 (2)
C7—C6—H6119.1C29—C28—C26119.9 (3)
C6—C7—C2120.6 (3)C29—C28—H28120.0
C6—C7—H7119.7C26—C28—H28120.0
C2—C7—H7119.7C28—C29—C30118.3 (3)
C8i—C8—C5126.0 (3)C28—C29—H29120.8
C8i—C8—H8117.0C30—C29—H29120.8
C5—C8—H8117.0N4—C30—C29123.5 (3)
O3—C9—O4121.1 (3)N4—C30—H30118.2
O3—C9—C10118.6 (2)C29—C30—H30118.2
O4—C9—C10120.3 (3)C31—N5—C33124.4 (15)
O3—C9—Cd156.80 (14)C31—N5—C32117.4 (13)
O4—C9—Cd164.33 (14)C33—N5—C32118.2 (18)
C10—C9—Cd1173.92 (18)O6—C31—N5126.3 (15)
C15—C10—C11118.3 (3)O6—C31—H31116.9
C15—C10—C9121.5 (3)N5—C31—H31116.9
O5—Cd1—O1—C149.6 (2)N4—Cd1—C9—C10148.5 (18)
O3—Cd1—O1—C186.0 (2)N1—Cd1—C9—C1075.9 (19)
N4—Cd1—O1—C1136.2 (2)O4—Cd1—C9—C10141.1 (19)
N1—Cd1—O1—C1178.5 (2)O3—C9—C10—C15168.5 (3)
O4—Cd1—O1—C133.3 (2)O4—C9—C10—C1510.1 (4)
C9—Cd1—O1—C161.4 (2)Cd1—C9—C10—C15128.9 (18)
O1—Cd1—O3—C9120.41 (16)O3—C9—C10—C1110.5 (4)
O5—Cd1—O3—C927.5 (2)O4—C9—C10—C11171.0 (2)
N4—Cd1—O3—C978.50 (16)Cd1—C9—C10—C1150 (2)
N1—Cd1—O3—C9150.53 (16)C15—C10—C11—C120.6 (4)
O4—Cd1—O3—C91.73 (14)C9—C10—C11—C12179.6 (3)
O1—Cd1—O4—C974.12 (16)C10—C11—C12—C130.6 (4)
O5—Cd1—O4—C9158.27 (15)C11—C12—C13—C140.8 (4)
O3—Cd1—O4—C91.70 (14)C11—C12—C13—C16178.8 (3)
N4—Cd1—O4—C9110.77 (15)C12—C13—C14—C151.2 (5)
N1—Cd1—O4—C953.02 (18)C16—C13—C14—C15178.5 (3)
O1—Cd1—N1—C1719.2 (2)C11—C10—C15—C140.9 (5)
O5—Cd1—N1—C17104.5 (2)C9—C10—C15—C14179.9 (3)
O3—Cd1—N1—C1777.3 (2)C13—C14—C15—C101.3 (5)
N4—Cd1—N1—C17179.8 (2)C12—C13—C16—C16ii26.4 (6)
O4—Cd1—N1—C17117.1 (2)C14—C13—C16—C16ii153.2 (4)
C9—Cd1—N1—C1792.1 (2)C21—N1—C17—C180.4 (4)
O1—Cd1—N1—C21166.58 (17)Cd1—N1—C17—C18174.5 (2)
O5—Cd1—N1—C2181.24 (19)N1—C17—C18—C190.1 (4)
O3—Cd1—N1—C2196.97 (17)C17—C18—C19—C200.3 (4)
N4—Cd1—N1—C215.98 (16)C18—C19—C20—C210.5 (4)
O4—Cd1—N1—C2157.2 (2)C18—C19—C20—C22179.8 (2)
C9—Cd1—N1—C2182.12 (18)C17—N1—C21—C200.2 (4)
O1—Cd1—N4—C30134.6 (2)Cd1—N1—C21—C20174.77 (18)
O5—Cd1—N4—C3048.8 (2)C17—N1—C21—C27179.5 (2)
O3—Cd1—N4—C3088.9 (2)Cd1—N1—C21—C274.9 (3)
N1—Cd1—N4—C30179.8 (2)C19—C20—C21—N10.3 (4)
O4—Cd1—N4—C3036.3 (2)C22—C20—C21—N1180.0 (2)
C9—Cd1—N4—C3062.1 (2)C19—C20—C21—C27179.9 (2)
O1—Cd1—N4—C2751.8 (3)C22—C20—C21—C270.4 (4)
O5—Cd1—N4—C27137.60 (18)C23—N2—C22—C250.6 (4)
O3—Cd1—N4—C2784.68 (19)C23—N2—C22—C20179.6 (2)
N1—Cd1—N4—C276.57 (17)C19—C20—C22—N20.0 (4)
O4—Cd1—N4—C27137.30 (18)C21—C20—C22—N2179.7 (2)
C9—Cd1—N4—C27111.47 (18)C19—C20—C22—C25179.8 (2)
Cd1—O1—C1—O214.5 (4)C21—C20—C22—C250.5 (4)
Cd1—O1—C1—C2164.98 (18)C22—N2—C23—C240.0 (4)
O2—C1—C2—C3179.9 (3)C25—N3—C24—C230.3 (4)
O1—C1—C2—C30.4 (4)N2—C23—C24—N30.5 (5)
O2—C1—C2—C72.2 (4)C24—N3—C25—C220.4 (4)
O1—C1—C2—C7177.3 (3)C24—N3—C25—C26179.3 (2)
C7—C2—C3—C40.7 (4)N2—C22—C25—N30.9 (4)
C1—C2—C3—C4177.0 (2)C20—C22—C25—N3179.4 (2)
C2—C3—C4—C50.6 (4)N2—C22—C25—C26179.8 (2)
C3—C4—C5—C60.3 (4)C20—C22—C25—C260.5 (4)
C3—C4—C5—C8178.3 (2)N3—C25—C26—C280.5 (4)
C4—C5—C6—C71.1 (4)C22—C25—C26—C28179.5 (3)
C8—C5—C6—C7177.5 (3)N3—C25—C26—C27179.3 (2)
C5—C6—C7—C21.0 (5)C22—C25—C26—C270.3 (4)
C3—C2—C7—C60.1 (4)C30—N4—C27—C260.5 (4)
C1—C2—C7—C6177.9 (3)Cd1—N4—C27—C26174.48 (19)
C6—C5—C8—C8i0.9 (5)C30—N4—C27—C21179.3 (2)
C4—C5—C8—C8i177.6 (3)Cd1—N4—C27—C216.7 (3)
Cd1—O3—C9—O43.2 (3)C28—C26—C27—N40.8 (4)
Cd1—O3—C9—C10175.37 (19)C25—C26—C27—N4179.0 (2)
Cd1—O4—C9—O33.0 (2)C28—C26—C27—C21179.6 (2)
Cd1—O4—C9—C10175.6 (2)C25—C26—C27—C210.2 (4)
O1—Cd1—C9—O365.23 (16)N1—C21—C27—N41.2 (3)
O5—Cd1—C9—O3159.83 (15)C20—C21—C27—N4179.1 (2)
N4—Cd1—C9—O3106.57 (16)N1—C21—C27—C26179.9 (2)
N1—Cd1—C9—O333.98 (18)C20—C21—C27—C260.3 (4)
O4—Cd1—C9—O3177.0 (2)C27—C26—C28—C290.8 (4)
O1—Cd1—C9—O4117.82 (14)C25—C26—C28—C29179.0 (3)
O5—Cd1—C9—O423.22 (16)C26—C28—C29—C300.6 (5)
O3—Cd1—C9—O4177.0 (2)C27—N4—C30—C290.2 (4)
N4—Cd1—C9—O470.38 (15)Cd1—N4—C30—C29173.6 (2)
N1—Cd1—C9—O4142.97 (13)C28—C29—C30—N40.3 (5)
O1—Cd1—C9—C1023.3 (19)C33—N5—C31—O6179.8 (4)
O5—Cd1—C9—C10117.9 (19)C32—N5—C31—O60.2 (3)
O3—Cd1—C9—C1042.0 (18)
Symmetry codes: (i) x+3, y, z+1; (ii) x+3, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O20.84 (1)1.85 (1)2.655 (3)158 (3)
O5—H5B···O4iii0.84 (1)1.88 (1)2.713 (3)169 (3)
Symmetry code: (iii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Cd(C16H10O4)(C14H8N4)(H2O)]·0.5C3H7NO
Mr665.45
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.4348 (5), 11.5167 (4), 11.7530 (5)
α, β, γ (°)84.654 (3), 69.154 (4), 84.027 (3)
V3)1435.97 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.30 × 0.28 × 0.16
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.778, 0.801
No. of measured, independent and
observed [I > 2σ(I)] reflections
14619, 5828, 3930
Rint0.047
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.056, 0.86
No. of reflections5828
No. of parameters416
No. of restraints33
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.32

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg; 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O20.844 (10)1.854 (13)2.655 (3)158 (3)
O5—H5B···O4i0.843 (10)1.881 (12)2.713 (3)169 (3)
Symmetry code: (i) x+2, y+1, z.
 

Acknowledgements

We thank the China–Japan Union Hospital of Jilin University for generously supporting this study.

References

First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationQiao, Q., Zhao, Y.-J. & Tang, T.-D. (2008). Acta Cryst. C64, m336–m338.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-Y., Wang, J.-J. & Ng, S. W. (2008). Acta Cryst. C64, m401–m404.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, J., Ma, J.-F., Liu, Y.-Y., Ma, J.-C. & Batten, S. R. (2007). Inorg. Chem. 46, 6542–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds