organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(3,4-di­meth­oxy­benzyl­­idene)butane-1,4-di­amine

aDepartment of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran, and bInstitute of Physics of the ASCR, Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: dusek@fzu.cz

(Received 26 June 2009; accepted 29 June 2009; online 4 July 2009)

The title Schiff base compound, C22H28N2O4, was synthesized by the reaction of 3,4-dimethoxy­benzaldehyde and 1,4-diamino­butane in methanol. The mol­ecule is located on a center of inversion with one half-mol­ecule in the asymmetric unit. Both C=N double bonds are in a trans configuration. Inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For related structures, see: Khalaji & Ng (2008[Khalaji, A. D. & Ng, S. W. (2008). Acta Cryst. E64, o1771.]); Khalaji et al. (2007[Khalaji, A. D., Brad, K. & Zhang, Y. (2007). Acta Cryst. E63, o4389.]).

[Scheme 1]

Experimental

Crystal data
  • C22H28N2O4

  • Mr = 384.5

  • Monoclinic, P 21 /c

  • a = 14.5770 (4) Å

  • b = 7.6201 (2) Å

  • c = 9.4456 (3) Å

  • β = 101.725 (2)°

  • V = 1027.31 (5) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.69 mm−1

  • T = 120 K

  • 0.29 × 0.16 × 0.09 mm

Data collection
  • Oxford Diffraction Gemini diffractometer with Xcalibur goniometer, an Atlas detector and a Gemini ultra Cu source

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.765, Tmax = 0.935

  • 5312 measured reflections

  • 1594 independent reflections

  • 1293 reflections with I > 3σ(I)

  • Rint = 0.024

  • θmax = 62.3°

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.096

  • S = 1.67

  • 1594 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O1i 0.96 2.54 3.4945 (17) 171
C11—H11B⋯O1ii 0.96 2.58 3.4830 (17) 158
Symmetry codes: (i) -x+1, -y, -z+2; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

Recently, we have synthesized Schiff base compounds with a 1,2-diaminoethane unit and analyzed their crystal structures (Khalaji & Ng, 2008; Khalaji et al., 2007). In continuation of these studies, the title compound was prepared and its structure was determined.

The molecule of the title compound is shown in Fig.1. A l l bond lengths and angles are comparable with those observed in similar compounds (Khalaji & Ng, 2008; Khalaji et al., 2007). The C7—N1 and C8—N1 bond lengths of 1.2657 (19) and 1.4620 (17) Å, respectively, conform to the value for a double and single bond. The molecule displays an E configuration about the C=N double bond.

Oxygen O1 and methyl C11H3 participate in two symmetry independent hydrogen bonds C—H···O which connect the molecules into a three-dimensional network (Fig. 2).

Related literature top

For related structures, see: Khalaji & Ng (2008); Khalaji et al. (2007).

Experimental top

A solution of 3,4-dimethoxybenzaldehyde (3.30 g, 0.02 mol) in 40 ml me thanol was heated for 25 min at 65°C and then stirred for about 30 min. To this stirring solution, a solution of 1,4-diaminobutane (0.84 g, 0.01 mol) in 5 ml me thanol was added dropwise with constant stirring. The mixture was refluxed for 1 h and then allowed to cool for overnight at 298 K. The resulting crude solid was collected by filtration and dried at room temperature. Crystals were grown by the slow evaporation technique at room temperature by using a mixture of 40 ml of chloroform-methanole (5:3 v/v) as a solvent. At the period of super saturation, tiny crystals were nucleated. They were allowed to grow to a maximum possible dimension and then filtered. Yield: 3.28 g, 85%. 1H-NMR (CDCl3, δ(p.p.m.)): 1.75 (t, 2H8), 3.61 (t, 4H1), 3.87 (s, 6H6), 3.90 (s, 6H7), 6.84 (d, 2H3), 7.10 (dd, 2H4), 7.39 (d, 2H5), 8.16 (S, 2H2).

Refinement top

All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice they were nevertheless kept in ideal positions during the refinement. The isotropic atomic displacement parameters of hydrogen atoms were set to 1.2Ueq of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x, -y, -x]
[Figure 2] Fig. 2. The packing of (I) viewed along b, with hydrogen bonds shown as dashed lines.
N,N'-Bis(3,4-dimethoxybenzylidene)butane-1,4-diamine top
Crystal data top
C22H28N2O4F(000) = 412
Mr = 384.5Dx = 1.243 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 3320 reflections
a = 14.5770 (4) Åθ = 3.1–62.2°
b = 7.6201 (2) ŵ = 0.69 mm1
c = 9.4456 (3) ÅT = 120 K
β = 101.725 (2)°Prism, colorless
V = 1027.31 (5) Å30.29 × 0.16 × 0.09 mm
Z = 2
Data collection top
Oxford Diffraction Gemini
diffractometer with Xcalibur goniometer, an Atlas detector and a Gemini ultra Cu source
1594 independent reflections
Radiation source: X-ray tube1293 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 20.7567 pixels mm-1θmax = 62.3°, θmin = 6.2°
Rotation method data acquisition using ω scansh = 1516
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 68
Tmin = 0.765, Tmax = 0.935l = 108
5312 measured reflections
Refinement top
Refinement on F256 constraints
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.096Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0016I2]
S = 1.67(Δ/σ)max = 0.010
1594 reflectionsΔρmax = 0.13 e Å3
127 parametersΔρmin = 0.14 e Å3
0 restraints
Crystal data top
C22H28N2O4V = 1027.31 (5) Å3
Mr = 384.5Z = 2
Monoclinic, P21/cCu Kα radiation
a = 14.5770 (4) ŵ = 0.69 mm1
b = 7.6201 (2) ÅT = 120 K
c = 9.4456 (3) Å0.29 × 0.16 × 0.09 mm
β = 101.725 (2)°
Data collection top
Oxford Diffraction Gemini
diffractometer with Xcalibur goniometer, an Atlas detector and a Gemini ultra Cu source
1594 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1293 reflections with I > 3σ(I)
Tmin = 0.765, Tmax = 0.935Rint = 0.024
5312 measured reflectionsθmax = 62.3°
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.67Δρmax = 0.13 e Å3
1594 reflectionsΔρmin = 0.14 e Å3
127 parameters
Special details top

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32039 (6)0.14609 (12)0.79180 (10)0.0270 (3)
O20.44401 (6)0.09623 (12)0.85186 (10)0.0273 (3)
N10.09135 (9)0.06805 (17)0.32350 (12)0.0300 (4)
C10.22426 (10)0.16821 (19)0.50087 (14)0.0249 (4)
C20.23245 (10)0.01522 (19)0.58506 (14)0.0253 (5)
C30.30568 (10)0.00345 (17)0.70163 (14)0.0230 (4)
C40.37318 (9)0.13126 (18)0.73672 (14)0.0238 (4)
C50.36408 (10)0.28352 (19)0.65593 (14)0.0267 (5)
C60.28914 (10)0.30120 (19)0.53867 (14)0.0268 (5)
C70.14929 (10)0.1882 (2)0.37154 (14)0.0271 (5)
C80.02298 (10)0.1056 (2)0.19086 (15)0.0328 (5)
C90.03674 (10)0.01461 (19)0.06882 (14)0.0280 (5)
C100.25804 (11)0.2911 (2)0.75602 (16)0.0335 (5)
C110.50866 (10)0.2352 (2)0.89969 (16)0.0334 (5)
H20.1868730.0766840.561330.0303*
H50.408950.3765140.6802250.032*
H60.2825030.4076740.4831970.0322*
H70.1440820.2982050.3209670.0325*
H8a0.029280.2255470.1632060.0393*
H8b0.0391960.09070.2082120.0393*
H9a0.0980650.0035650.0489770.0337*
H9b0.0347010.134630.0989310.0337*
H10a0.2783250.3861480.8216630.0402*
H10b0.1958980.2562610.7633710.0402*
H10c0.2579610.3285570.6589430.0402*
H11a0.553230.1978410.9835610.0401*
H11b0.5409450.2653070.824020.0401*
H11c0.4752580.3359020.9236280.0401*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0291 (6)0.0255 (5)0.0232 (5)0.0036 (4)0.0026 (4)0.0037 (4)
O20.0245 (5)0.0302 (6)0.0231 (5)0.0033 (4)0.0049 (4)0.0017 (4)
N10.0301 (7)0.0343 (7)0.0218 (6)0.0028 (6)0.0036 (5)0.0020 (5)
C10.0275 (8)0.0271 (8)0.0189 (7)0.0039 (6)0.0018 (6)0.0010 (6)
C20.0246 (7)0.0285 (8)0.0213 (7)0.0002 (6)0.0014 (6)0.0043 (6)
C30.0264 (7)0.0236 (8)0.0182 (7)0.0025 (6)0.0024 (5)0.0000 (6)
C40.0230 (7)0.0293 (8)0.0176 (7)0.0017 (6)0.0009 (6)0.0020 (6)
C50.0276 (8)0.0278 (8)0.0234 (7)0.0032 (6)0.0021 (6)0.0005 (6)
C60.0319 (8)0.0272 (8)0.0208 (7)0.0021 (6)0.0037 (6)0.0019 (6)
C70.0308 (8)0.0284 (8)0.0200 (7)0.0057 (7)0.0003 (6)0.0008 (6)
C80.0307 (8)0.0365 (9)0.0262 (8)0.0043 (7)0.0059 (6)0.0004 (7)
C90.0252 (8)0.0302 (8)0.0258 (8)0.0001 (6)0.0019 (6)0.0027 (6)
C100.0362 (9)0.0277 (8)0.0326 (8)0.0072 (7)0.0022 (7)0.0042 (6)
C110.0283 (8)0.0373 (9)0.0299 (8)0.0088 (7)0.0052 (6)0.0016 (7)
Geometric parameters (Å, º) top
O1—C31.3706 (16)C6—H60.96
O1—C101.4272 (18)C7—H70.96
O2—C41.3651 (14)C8—C91.517 (2)
O2—C111.4287 (17)C8—H8a0.96
N1—C71.2657 (19)C8—H8b0.96
N1—C81.4620 (17)C9—C9i1.5236 (17)
C1—C21.403 (2)C9—H9a0.96
C1—C61.383 (2)C9—H9b0.96
C1—C71.4722 (17)C10—H10a0.96
C2—C31.3763 (17)C10—H10b0.96
C2—H20.96C10—H10c0.96
C3—C41.4139 (19)C11—H11a0.96
C4—C51.380 (2)C11—H11b0.96
C5—C61.3951 (18)C11—H11c0.96
C5—H50.96
C3—O1—C10117.08 (10)N1—C8—C9111.13 (12)
C4—O2—C11116.78 (10)N1—C8—H8a109.4714
C7—N1—C8117.04 (12)N1—C8—H8b109.4713
C2—C1—C6119.20 (11)C9—C8—H8a109.4714
C2—C1—C7121.32 (13)C9—C8—H8b109.471
C6—C1—C7119.46 (13)H8a—C8—H8b107.7587
C1—C2—C3120.15 (13)C8—C9—C9i112.43 (12)
C1—C2—H2119.9235C8—C9—H9a109.4708
C3—C2—H2119.9231C8—C9—H9b109.4709
O1—C3—C2125.24 (12)C9i—C9—H9a109.4717
O1—C3—C4114.61 (11)C9i—C9—H9b109.4713
C2—C3—C4120.14 (12)H9a—C9—H9b106.344
O2—C4—C3114.99 (11)O1—C10—H10a109.4718
O2—C4—C5125.24 (12)O1—C10—H10b109.4712
C3—C4—C5119.77 (11)O1—C10—H10c109.4714
C4—C5—C6119.46 (13)H10a—C10—H10b109.471
C4—C5—H5120.2676H10a—C10—H10c109.4712
C6—C5—H5120.2684H10b—C10—H10c109.4707
C1—C6—C5121.22 (13)O2—C11—H11a109.4712
C1—C6—H6119.3878O2—C11—H11b109.4717
C5—C6—H6119.3886O2—C11—H11c109.4713
N1—C7—C1123.46 (13)H11a—C11—H11b109.4716
N1—C7—H7118.272H11a—C11—H11c109.4708
C1—C7—H7118.2721H11b—C11—H11c109.4708
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O1ii0.962.543.4945 (17)171
C11—H11B···O1iii0.962.583.4830 (17)158
Symmetry codes: (ii) x+1, y, z+2; (iii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC22H28N2O4
Mr384.5
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)14.5770 (4), 7.6201 (2), 9.4456 (3)
β (°) 101.725 (2)
V3)1027.31 (5)
Z2
Radiation typeCu Kα
µ (mm1)0.69
Crystal size (mm)0.29 × 0.16 × 0.09
Data collection
DiffractometerOxford Diffraction Gemini
diffractometer with Xcalibur goniometer, an Atlas detector and a Gemini ultra Cu source
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.765, 0.935
No. of measured, independent and
observed [I > 3σ(I)] reflections
5312, 1594, 1293
Rint0.024
θmax (°)62.3
(sin θ/λ)max1)0.574
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.67
No. of reflections1594
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.14

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O1i0.962.543.4945 (17)171
C11—H11B···O1ii0.962.583.4830 (17)158
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1/2, z+3/2.
 

Acknowledgements

We acknowledge Golestan University (GU) for partial support of this work, the institutional research plan No. AVOZ10100521 of the Institute of Physics and project 202/07/J007 of the Grant Agency of the Czech Republic.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationKhalaji, A. D., Brad, K. & Zhang, Y. (2007). Acta Cryst. E63, o4389.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalaji, A. D. & Ng, S. W. (2008). Acta Cryst. E64, o1771.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds