organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzoyl-c-3,t-3-di­methyl-r-2,c-6-di­phenyl­piperidin-4-one

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, India, and cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 30 June 2009; accepted 16 July 2009; online 25 July 2009)

In the title compound, C26H25NO2, the piperidine ring adopts a distorted boat conformation. The three phenyl rings form dihedral angles of 67.58 (8), 59.82 (8) and 86.41 (8)° with the best plane through the piperidine ring. The crystal packing is governed by inter­molecular C—H⋯O inter­actions.

Related literature

For the biological activity of piperidine derivatives, see: Dimmock et al. (2001[Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balsarini, J., Clercq, E. D. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586-593.]); Perumal et al. (2001[Perumal, R. V., Agiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156-159.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering and asymmetry parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C26H25NO2

  • Mr = 383.47

  • Monoclinic, P 21 /c

  • a = 10.8540 (9) Å

  • b = 17.8050 (17) Å

  • c = 10.8853 (10) Å

  • β = 94.987 (3)°

  • V = 2095.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.977, Tmax = 0.985

  • 27356 measured reflections

  • 6189 independent reflections

  • 3897 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.152

  • S = 0.98

  • 6189 reflections

  • 265 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1 0.98 2.29 2.7346 (17) 106
C2—H2⋯O1i 0.98 2.56 3.3784 (17) 141
C20—H20A⋯O1i 0.96 2.47 3.1885 (19) 132
C20—H20B⋯O2ii 0.96 2.52 3.470 (2) 170
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Piperidones are the important group of heterocyclic compounds in the field of medicinal chemistry due to their biological activities, including cytotoxic and anticancer properties (Dimmock et al., 2001). They were also reported to possess analgesic, anti-inflammatory, central nervous system (CNS), local anaesthetic, anticancer and antimicrobial activities (Perumal et al., 2001). In view of these importance and to ascertain the molecular conformation, crystallographic study of the title compound has been carried out.

The ORTEP diagram of the title compound is shown in Fig.1. The piperidine ring adopts distorted boat conformation. The puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) for this ring are q2 = 0.636 (2) Å, q3 = 0.104 (2) Å, π = 282.8 (1)° and Δs(C3) =Δs(C6)= 18.6 (1)°. The sum of the angles at N1 (359.7°) is in accrdance with sp2 hybridization. The three phenyl rings are twisted away from the best plane of the pyridine ring by 67.58 (8)°, 59.82 (8)° and 86.41 (8)° respectively.

The crystal packing is controlled by C—H···O types of intra and intermolecular interactions in addition to van der Waals forces. Atom C2 at (x, y, z) donates a proton to O1 x, -y + 1/2, z + 1/2, which forms a C(5) (Bernstein, et al., 1995) zigzag chain running along c axis. The combination of C20—H20A···O1 and C20—H20B···O2 intermolecular interactions forms a dimer chain running along c axis shown in Fig. 2.

Related literature top

For the biological activity of piperidine derivatives, see: Dimmock et al. (2001); Perumal et al. (2001). For hydrogen-bond motifs, see: Bernstein et al. (1995). For puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

A mixture of c-3,t-3-dimethyl-r-2,c-6-diphenylpiperidin-4-one (1.4 g, 5 mmol), benzoyl chloride (1.2 ml, 10 mmol) and triethylamine (2 ml, 14.4 mmol) in anhydrous benzene (20 ml) was stirred at room temperature for 7 h. The precipitated ammonium salt was washed with water (4x10ml). The resulting pasty mass was purified and crystallized from benzene and pet-ether (60–80°C) in the ratio of 95: 5.

Refinement top

All H atoms were positioned geometrically (C—H=0.93–0.98 Å) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl H and 1.2 Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecule showing displacement ellipsoids at 50% probability level. The H atoms are omitted for clarity.
[Figure 2] Fig. 2. The crystal packing viewed down a axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
1-Benzoyl-c-3,t-3-dimethyl-r-2,c-6- diphenylpiperidin-4-one top
Crystal data top
C26H25NO2F(000) = 816
Mr = 383.47Dx = 1.215 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5746 reflections
a = 10.8540 (9) Åθ = 1.9–30.4°
b = 17.8050 (17) ŵ = 0.08 mm1
c = 10.8853 (10) ÅT = 293 K
β = 94.987 (3)°Block, colorless
V = 2095.7 (3) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
6189 independent reflections
Radiation source: fine-focus sealed tube3897 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω and ϕ scansθmax = 30.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1513
Tmin = 0.977, Tmax = 0.985k = 2525
27356 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0728P)2 + 0.3353P]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.011
6189 reflectionsΔρmax = 0.24 e Å3
265 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0078 (16)
Crystal data top
C26H25NO2V = 2095.7 (3) Å3
Mr = 383.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.8540 (9) ŵ = 0.08 mm1
b = 17.8050 (17) ÅT = 293 K
c = 10.8853 (10) Å0.30 × 0.25 × 0.20 mm
β = 94.987 (3)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
6189 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3897 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.985Rint = 0.038
27356 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 0.98Δρmax = 0.24 e Å3
6189 reflectionsΔρmin = 0.17 e Å3
265 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14493 (11)0.19520 (7)0.50443 (9)0.0560 (3)
O20.41301 (12)0.16165 (9)1.02065 (10)0.0722 (4)
N10.17515 (10)0.16380 (6)0.70591 (9)0.0338 (2)
C20.12064 (12)0.15019 (8)0.82403 (11)0.0361 (3)
H20.08810.19800.85200.043*
C30.21997 (14)0.12271 (9)0.92293 (12)0.0466 (4)
H3A0.18860.12941.00300.056*
H3B0.23130.06920.91130.056*
C40.34508 (15)0.15986 (10)0.92630 (13)0.0493 (4)
C50.38114 (14)0.19299 (9)0.80660 (13)0.0446 (3)
C60.30890 (12)0.15316 (7)0.69712 (11)0.0362 (3)
H60.32820.18090.62350.043*
C70.10627 (13)0.19291 (8)0.60735 (11)0.0373 (3)
C80.01836 (13)0.22524 (8)0.62390 (11)0.0376 (3)
C90.12156 (16)0.19732 (9)0.55574 (16)0.0543 (4)
H90.11490.15500.50670.065*
C100.23461 (17)0.23218 (11)0.5604 (2)0.0681 (5)
H100.30400.21250.51550.082*
C110.24602 (16)0.29517 (10)0.62980 (18)0.0600 (4)
H110.32230.31870.63120.072*
C120.14437 (17)0.32334 (10)0.69727 (17)0.0588 (4)
H120.15160.36640.74450.071*
C130.03124 (15)0.28842 (9)0.69574 (15)0.0507 (4)
H130.03700.30750.74330.061*
C140.01468 (13)0.09444 (8)0.80976 (12)0.0385 (3)
C150.01631 (15)0.03311 (8)0.73135 (15)0.0485 (4)
H150.08320.02590.68480.058*
C160.08083 (17)0.01740 (10)0.72184 (18)0.0608 (5)
H160.07910.05820.66880.073*
C170.18017 (18)0.00735 (12)0.7908 (2)0.0699 (5)
H170.24550.04130.78440.084*
C180.18221 (18)0.05259 (13)0.8683 (2)0.0724 (6)
H180.24900.05920.91520.087*
C190.08585 (15)0.10376 (10)0.87796 (15)0.0561 (4)
H190.08880.14470.93070.067*
C200.34155 (16)0.27631 (9)0.80821 (15)0.0539 (4)
H20A0.25500.27940.81960.081*
H20B0.35690.29950.73140.081*
H20C0.38820.30180.87470.081*
C210.52053 (15)0.19025 (12)0.79462 (18)0.0646 (5)
H21A0.56340.21490.86420.097*
H21B0.53860.21530.72020.097*
H21C0.54700.13890.79200.097*
C220.34321 (13)0.07146 (8)0.67344 (13)0.0397 (3)
C230.40686 (15)0.02446 (10)0.75922 (15)0.0532 (4)
H230.43000.04240.83810.064*
C240.43630 (17)0.04821 (10)0.72953 (19)0.0638 (5)
H240.47890.07870.78820.077*
C250.40313 (18)0.07557 (10)0.6143 (2)0.0700 (5)
H250.42340.12460.59430.084*
C260.33977 (17)0.03070 (10)0.52792 (18)0.0627 (5)
H260.31620.04950.44970.075*
C270.31101 (14)0.04226 (9)0.55720 (14)0.0475 (4)
H270.26910.07240.49760.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0589 (7)0.0747 (8)0.0352 (5)0.0155 (6)0.0096 (5)0.0121 (5)
O20.0575 (8)0.1115 (11)0.0444 (6)0.0127 (7)0.0138 (5)0.0013 (6)
N10.0348 (6)0.0364 (6)0.0304 (5)0.0024 (4)0.0035 (4)0.0021 (4)
C20.0398 (7)0.0379 (7)0.0308 (6)0.0046 (6)0.0045 (5)0.0026 (5)
C30.0469 (9)0.0608 (9)0.0314 (6)0.0062 (7)0.0002 (6)0.0079 (6)
C40.0465 (9)0.0623 (10)0.0377 (7)0.0050 (7)0.0046 (6)0.0025 (6)
C50.0382 (8)0.0535 (8)0.0418 (7)0.0107 (6)0.0023 (6)0.0053 (6)
C60.0346 (7)0.0400 (7)0.0342 (6)0.0031 (5)0.0044 (5)0.0009 (5)
C70.0424 (8)0.0365 (7)0.0329 (6)0.0008 (6)0.0025 (5)0.0033 (5)
C80.0400 (8)0.0384 (7)0.0341 (6)0.0001 (6)0.0012 (5)0.0054 (5)
C90.0520 (10)0.0482 (9)0.0602 (9)0.0012 (7)0.0090 (7)0.0065 (7)
C100.0455 (10)0.0635 (11)0.0914 (13)0.0029 (8)0.0171 (9)0.0044 (10)
C110.0421 (10)0.0613 (11)0.0772 (11)0.0092 (8)0.0096 (8)0.0086 (9)
C120.0585 (11)0.0559 (10)0.0623 (10)0.0107 (8)0.0065 (8)0.0072 (8)
C130.0465 (9)0.0514 (9)0.0530 (8)0.0019 (7)0.0029 (7)0.0096 (7)
C140.0380 (8)0.0398 (7)0.0372 (6)0.0028 (6)0.0002 (5)0.0102 (5)
C150.0461 (9)0.0402 (8)0.0588 (9)0.0051 (6)0.0020 (7)0.0019 (6)
C160.0605 (11)0.0441 (9)0.0748 (11)0.0121 (8)0.0106 (9)0.0065 (8)
C170.0543 (11)0.0667 (12)0.0860 (13)0.0249 (9)0.0094 (9)0.0264 (10)
C180.0478 (11)0.0892 (15)0.0825 (13)0.0161 (10)0.0185 (9)0.0165 (11)
C190.0482 (10)0.0659 (11)0.0556 (9)0.0082 (8)0.0125 (7)0.0015 (8)
C200.0578 (10)0.0517 (9)0.0534 (9)0.0181 (8)0.0115 (7)0.0115 (7)
C210.0408 (10)0.0849 (13)0.0679 (11)0.0175 (9)0.0028 (8)0.0122 (9)
C220.0322 (7)0.0419 (7)0.0450 (7)0.0006 (6)0.0034 (5)0.0021 (6)
C230.0476 (9)0.0557 (9)0.0546 (9)0.0042 (7)0.0047 (7)0.0055 (7)
C240.0506 (10)0.0528 (10)0.0855 (13)0.0092 (8)0.0085 (9)0.0137 (9)
C250.0571 (12)0.0432 (9)0.1068 (15)0.0095 (8)0.0094 (10)0.0086 (10)
C260.0609 (11)0.0520 (10)0.0728 (11)0.0076 (8)0.0074 (9)0.0174 (8)
C270.0454 (9)0.0468 (8)0.0493 (8)0.0055 (7)0.0021 (6)0.0041 (6)
Geometric parameters (Å, º) top
O1—C71.2307 (16)C14—C191.382 (2)
O2—C41.2115 (17)C14—C151.387 (2)
N1—C71.3561 (16)C15—C161.383 (2)
N1—C61.4754 (17)C15—H150.9300
N1—C21.4813 (15)C16—C171.378 (3)
C2—C141.5170 (19)C16—H160.9300
C2—C31.5359 (19)C17—C181.362 (3)
C2—H20.9800C17—H170.9300
C3—C41.508 (2)C18—C191.384 (3)
C3—H3A0.9700C18—H180.9300
C3—H3B0.9700C19—H190.9300
C4—C51.513 (2)C20—H20A0.9600
C5—C211.531 (2)C20—H20B0.9600
C5—C61.5412 (19)C20—H20C0.9600
C5—C201.545 (2)C21—H21A0.9600
C6—C221.529 (2)C21—H21B0.9600
C6—H60.9800C21—H21C0.9600
C7—C81.495 (2)C22—C271.384 (2)
C8—C91.381 (2)C22—C231.392 (2)
C8—C131.384 (2)C23—C241.378 (2)
C9—C101.380 (3)C23—H230.9300
C9—H90.9300C24—C251.364 (3)
C10—C111.364 (3)C24—H240.9300
C10—H100.9300C25—C261.372 (3)
C11—C121.367 (3)C25—H250.9300
C11—H110.9300C26—C271.380 (2)
C12—C131.378 (2)C26—H260.9300
C12—H120.9300C27—H270.9300
C13—H130.9300
C7—N1—C6118.40 (10)C8—C13—H13119.7
C7—N1—C2120.99 (11)C19—C14—C15118.55 (14)
C6—N1—C2120.31 (10)C19—C14—C2119.56 (13)
N1—C2—C14112.00 (10)C15—C14—C2121.88 (13)
N1—C2—C3110.59 (11)C16—C15—C14120.51 (16)
C14—C2—C3110.06 (11)C16—C15—H15119.7
N1—C2—H2108.0C14—C15—H15119.7
C14—C2—H2108.0C17—C16—C15120.16 (18)
C3—C2—H2108.0C17—C16—H16119.9
C4—C3—C2116.94 (12)C15—C16—H16119.9
C4—C3—H3A108.1C18—C17—C16119.66 (17)
C2—C3—H3A108.1C18—C17—H17120.2
C4—C3—H3B108.1C16—C17—H17120.2
C2—C3—H3B108.1C17—C18—C19120.68 (18)
H3A—C3—H3B107.3C17—C18—H18119.7
O2—C4—C3120.83 (14)C19—C18—H18119.7
O2—C4—C5122.41 (15)C14—C19—C18120.43 (17)
C3—C4—C5116.74 (12)C14—C19—H19119.8
C4—C5—C21113.12 (14)C18—C19—H19119.8
C4—C5—C6109.53 (12)C5—C20—H20A109.5
C21—C5—C6111.08 (12)C5—C20—H20B109.5
C4—C5—C20105.76 (12)H20A—C20—H20B109.5
C21—C5—C20108.03 (13)C5—C20—H20C109.5
C6—C5—C20109.10 (12)H20A—C20—H20C109.5
N1—C6—C22112.86 (11)H20B—C20—H20C109.5
N1—C6—C5109.16 (10)C5—C21—H21A109.5
C22—C6—C5116.95 (12)C5—C21—H21B109.5
N1—C6—H6105.6H21A—C21—H21B109.5
C22—C6—H6105.6C5—C21—H21C109.5
C5—C6—H6105.6H21A—C21—H21C109.5
O1—C7—N1121.65 (13)H21B—C21—H21C109.5
O1—C7—C8118.71 (12)C27—C22—C23117.29 (14)
N1—C7—C8119.61 (11)C27—C22—C6117.74 (12)
C9—C8—C13118.61 (14)C23—C22—C6124.95 (13)
C9—C8—C7119.78 (13)C24—C23—C22121.26 (16)
C13—C8—C7121.19 (13)C24—C23—H23119.4
C10—C9—C8120.05 (16)C22—C23—H23119.4
C10—C9—H9120.0C25—C24—C23120.19 (16)
C8—C9—H9120.0C25—C24—H24119.9
C11—C10—C9120.93 (17)C23—C24—H24119.9
C11—C10—H10119.5C24—C25—C26119.90 (17)
C9—C10—H10119.5C24—C25—H25120.0
C10—C11—C12119.45 (16)C26—C25—H25120.0
C10—C11—H11120.3C25—C26—C27119.99 (17)
C12—C11—H11120.3C25—C26—H26120.0
C11—C12—C13120.44 (16)C27—C26—H26120.0
C11—C12—H12119.8C26—C27—C22121.36 (15)
C13—C12—H12119.8C26—C27—H27119.3
C12—C13—C8120.50 (15)C22—C27—H27119.3
C12—C13—H13119.7
C7—N1—C2—C1461.05 (16)C13—C8—C9—C100.2 (2)
C6—N1—C2—C14125.24 (12)C7—C8—C9—C10172.85 (15)
C7—N1—C2—C3175.79 (12)C8—C9—C10—C111.3 (3)
C6—N1—C2—C32.08 (16)C9—C10—C11—C121.1 (3)
N1—C2—C3—C440.28 (18)C10—C11—C12—C130.2 (3)
C14—C2—C3—C4164.56 (13)C11—C12—C13—C81.3 (3)
C2—C3—C4—O2154.70 (16)C9—C8—C13—C121.1 (2)
C2—C3—C4—C526.3 (2)C7—C8—C13—C12171.44 (14)
O2—C4—C5—C2130.2 (2)N1—C2—C14—C19144.35 (13)
C3—C4—C5—C21148.72 (15)C3—C2—C14—C1992.20 (16)
O2—C4—C5—C6154.74 (16)N1—C2—C14—C1536.78 (18)
C3—C4—C5—C624.22 (19)C3—C2—C14—C1586.67 (15)
O2—C4—C5—C2087.8 (2)C19—C14—C15—C160.1 (2)
C3—C4—C5—C2093.23 (16)C2—C14—C15—C16178.96 (13)
C7—N1—C6—C22102.18 (13)C14—C15—C16—C170.3 (2)
C2—N1—C6—C2283.95 (14)C15—C16—C17—C180.0 (3)
C7—N1—C6—C5125.98 (13)C16—C17—C18—C190.4 (3)
C2—N1—C6—C547.89 (15)C15—C14—C19—C180.3 (2)
C4—C5—C6—N159.99 (15)C2—C14—C19—C18178.58 (16)
C21—C5—C6—N1174.33 (13)C17—C18—C19—C140.6 (3)
C20—C5—C6—N155.34 (14)N1—C6—C22—C2772.51 (15)
C4—C5—C6—C2269.65 (16)C5—C6—C22—C27159.62 (13)
C21—C5—C6—C2256.03 (17)N1—C6—C22—C23108.93 (15)
C20—C5—C6—C22175.02 (11)C5—C6—C22—C2318.9 (2)
C6—N1—C7—O116.05 (19)C27—C22—C23—C240.1 (2)
C2—N1—C7—O1170.12 (13)C6—C22—C23—C24178.70 (15)
C6—N1—C7—C8162.10 (11)C22—C23—C24—C250.0 (3)
C2—N1—C7—C811.73 (18)C23—C24—C25—C260.3 (3)
O1—C7—C8—C959.09 (19)C24—C25—C26—C270.8 (3)
N1—C7—C8—C9122.69 (15)C25—C26—C27—C221.0 (3)
O1—C7—C8—C13113.39 (16)C23—C22—C27—C260.6 (2)
N1—C7—C8—C1364.83 (18)C6—C22—C27—C26179.29 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.982.292.7346 (17)106
C2—H2···O1i0.982.563.3784 (17)141
C20—H20A···O1i0.962.473.1885 (19)132
C20—H20B···O2ii0.962.523.470 (2)170
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC26H25NO2
Mr383.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.8540 (9), 17.8050 (17), 10.8853 (10)
β (°) 94.987 (3)
V3)2095.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.977, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
27356, 6189, 3897
Rint0.038
(sin θ/λ)max1)0.713
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.152, 0.98
No. of reflections6189
No. of parameters265
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.17

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.982.292.7346 (17)106.4
C2—H2···O1i0.982.563.3784 (17)140.5
C20—H20A···O1i0.962.473.1885 (19)131.6
C20—H20B···O2ii0.962.523.470 (2)169.9
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
 

Acknowledgements

SA thanks Dr Babu Varghese, SAIF, IIT–Madras, India, for his help with the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balsarini, J., Clercq, E. D. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586–593.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPerumal, R. V., Agiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156–159.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds