organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′,4′′-Tris(2-pyrid­yl)-2,2′,2′′-[(2,4,6-tri­methyl­benzene-1,3,5-tri­yl)tris­­(methyl­ene)tris­­(sulfanedi­yl)]tri­pyrimidine

aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: cep02chl@yahoo.com.cn

(Received 4 July 2009; accepted 7 July 2009; online 11 July 2009)

The title compound, C39H33N9S3, features a mesitylene unit substituted with three thio­ether arms. The distances from the center of mesitylene unit to the N atoms of the three pyridine rings in the arms are 10.05 (1), 9.94 (3) and 8.79 (3) Å. The crystal structure shows weak intra­molecular C—H⋯N hydrogen bonds.

Related literature

For the potential use of tripodal ligands in the construction of organic-inorganic architectures, see: Hammes et al. (1998[Hammes, B. S., Ramos-Maldonado, D., Yap, G. P. A., Rheingold, A. L., Young, V. G. & Borovik, A. S. (1998). Coord. Chem. Rev. 174, 241-253.]); Hiraoka et al. (2005[Hiraoka, S., Harano, K., Shiro, M. & Shionoya, M. (2005). Angew. Chem. Int. Ed. 44, 2727-2731.]). For the use of flexible thio­ether ligands to produce extended structures with metal ions, see: Dong et al. (2008a[Dong, H. Z., Yang, J., Liu, X. & Gou, S. H. (2008a). Inorg. Chem. 47, 2913-2915.],b[Dong, H. Z., Zhu, H. B., Liu, X. & Gou, S. H. (2008b). Polyhedron, 27, 2167-2174.]); Zhang et al. (2008[Zhang, Y.-W., Dong, H.-Z. & Cheng, L. (2008). Acta Cryst. E64, m868.]).

[Scheme 1]

Experimental

Crystal data
  • C39H33N9S3

  • Mr = 723.92

  • Monoclinic, P 21 /c

  • a = 11.966 (2) Å

  • b = 10.520 (2) Å

  • c = 31.959 (6) Å

  • β = 108.369 (6)°

  • V = 3818.1 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.944, Tmax = 0.959

  • 17715 measured reflections

  • 6544 independent reflections

  • 2957 reflections with I > 2σ(I)

  • Rint = 0.107

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.163

  • S = 1.08

  • 6544 reflections

  • 460 parameters

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20A⋯N5 0.97 2.39 2.818 (6) 106
C26—H26A⋯N5 0.93 2.45 2.767 (7) 100
C36—H36A⋯N7 0.93 2.49 2.806 (7) 100

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recent years have witnessed an explosion of great interest in tripodal ligands for their potential applications to construct intriguing hybrid organic-inorganic architectures and topologies (Hammes et al. 1998; Hiraoka et al., 2005). On the other hand, flexible thioether ligands have been successfully used to produce various extended structures with metal ions (Dong et al., 2008a,b; Zhang et al., 2008). Herein, we report the crystal structure of 2,2',2''-(2,4,6-trimethylbenzene-1,3,5-triyl) tris(methylene)tris(sulfanediyl)tris(4-(pyridin-2-yl)pyrimidine).

The tripodal character of C33H30N10S3 arises from the three thioether arms surrounding a central mesitylene. The distances of the center of mesitylene to the nitrogen atoms of three pyridine rings in the arms are 10.05 (1), 9.94 (3) and 8.79 (3) °, respectively. The crystal structure shows wear intramolecular weak C—H···N hydrogen bonds.

Related literature top

For the potential use of tripodal ligands in the construction of organic-inorganic architectures, see: Hammes et al. (1998); Hiraoka et al. (2005). For the use of flexible thioether ligands to produce extended structures with metal ions, see: Dong et al. (2008a,b); Zhang et al. (2008).

Experimental top

An 95% ethanol solution (50 ml) of 1,3,5-tris(chloromethyl)-2,4,6-trimethylbenzene (2.64 g, 10 mmol) was added to a dry ethanol solution (300 ml) containing 4-(pyridin-2-yl)pyrimidine-2-thiol (5.67 g, 30 mmol) and sodium hydroxide (1.20 g, 30 mmol). The solution was stirred and refluxed for 8 h. Yellow precipitates were filtered out, washed by water and ethanol, and dried in vacuum. Yield (4.42 g) 61.0%. The yellow crystals were obtained after the filter slowly evaporated.

Refinement top

All the H atoms were located in a difference map and refined using a riding model with C-H ranging from 0.93Å to 0.97Å and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl). There are holes in the structure but the largest residual peak value is 0.892e/Å3, and no model for any solvent could be found.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of the title compound with 15% displacement ellipsoids.
[Figure 2] Fig. 2. The three-dimensional supramolecular network of the title compound.
4,4',4''-Tris(2-pyridyl)-2,2',2''-[(2,4,6-trimethylbenzene-1,3,5- triyl)tris(methylene)tris(sulfanediyl)]tripyrimidine top
Crystal data top
C39H33N9S3F(000) = 1512
Mr = 723.92Dx = 1.259 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 780 reflections
a = 11.966 (2) Åθ = 2.4–28.0°
b = 10.520 (2) ŵ = 0.24 mm1
c = 31.959 (6) ÅT = 293 K
β = 108.369 (6)°Block, yellow
V = 3818.1 (12) Å30.25 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
6544 independent reflections
Radiation source: fine-focus sealed tube2957 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.107
ϕ and ω scansθmax = 25.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1214
Tmin = 0.944, Tmax = 0.959k = 1211
17715 measured reflectionsl = 3838
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.01P)2 + 1.28P]
where P = (Fo2 + 2Fc2)/3
6544 reflections(Δ/σ)max < 0.001
460 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C39H33N9S3V = 3818.1 (12) Å3
Mr = 723.92Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.966 (2) ŵ = 0.24 mm1
b = 10.520 (2) ÅT = 293 K
c = 31.959 (6) Å0.25 × 0.20 × 0.18 mm
β = 108.369 (6)°
Data collection top
Bruker SMART APEX CCD
diffractometer
6544 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2957 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.959Rint = 0.107
17715 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0810 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.08Δρmax = 0.89 e Å3
6544 reflectionsΔρmin = 0.26 e Å3
460 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.58642 (11)0.78603 (12)0.22867 (4)0.0754 (4)
S20.62715 (13)1.06746 (13)0.05185 (4)0.0883 (5)
S30.23200 (12)0.66957 (13)0.12895 (5)0.0924 (5)
C10.4361 (4)0.9300 (4)0.20145 (14)0.0620 (12)
C20.3434 (4)0.8618 (5)0.19733 (16)0.0680 (13)
C30.3010 (4)0.8814 (5)0.16132 (17)0.0679 (13)
C40.3590 (5)0.9676 (5)0.12875 (16)0.0705 (13)
C50.4568 (5)1.0361 (4)0.13279 (16)0.0674 (13)
C60.4962 (4)1.0149 (4)0.16834 (16)0.0626 (12)
C70.2812 (5)0.7628 (5)0.23179 (17)0.0993 (17)
H7A0.31760.75990.25460.149*
H7B0.28710.68090.21800.149*
H7C0.19970.78550.24440.149*
C80.3170 (5)0.9901 (5)0.08946 (17)0.1026 (18)
H8A0.24980.93730.09190.154*
H8B0.37890.96930.06290.154*
H8C0.29561.07780.08870.154*
C90.6043 (4)1.0849 (5)0.17075 (16)0.0833 (15)
H9A0.62161.05990.19690.125*
H9B0.59001.17480.17150.125*
H9C0.66991.06450.14530.125*
C100.4793 (4)0.9128 (5)0.24122 (14)0.0740 (14)
H10A0.41390.89140.26710.089*
H10B0.51490.99080.24710.089*
C110.6446 (4)0.7921 (4)0.27308 (14)0.0616 (12)
C120.6554 (5)0.8711 (5)0.33626 (15)0.0713 (13)
H12A0.62880.92530.36040.086*
C130.7498 (4)0.7944 (5)0.33389 (14)0.0645 (12)
H13A0.78590.79550.35580.077*
C140.7884 (4)0.7169 (4)0.29843 (14)0.0532 (11)
C150.8931 (4)0.6337 (4)0.29058 (15)0.0626 (12)
C160.9256 (5)0.5489 (5)0.25625 (15)0.0745 (14)
H16A0.88170.54080.23700.089*
C171.0242 (5)0.4764 (5)0.2511 (2)0.0908 (17)
H17A1.04900.41940.22770.109*
C181.0852 (5)0.4882 (6)0.2800 (2)0.0940 (17)
H18A1.15080.43790.27770.113*
C191.0482 (6)0.5740 (6)0.3118 (2)0.1053 (19)
H19A1.09270.58430.33080.126*
C200.5140 (5)1.1352 (4)0.09856 (16)0.0861 (16)
H20A0.54881.20050.11200.103*
H20B0.45431.17500.08830.103*
C210.7111 (4)1.2020 (5)0.03108 (15)0.0686 (13)
C220.8719 (6)1.2798 (7)0.02049 (17)0.0975 (19)
H22A0.93651.26900.04560.117*
C230.8548 (5)1.3965 (6)0.00115 (17)0.0937 (17)
H23A0.90571.46400.01230.112*
C240.7563 (5)1.4094 (5)0.03647 (16)0.0699 (13)
C250.7259 (5)1.5296 (5)0.06142 (17)0.0773 (14)
C260.6307 (5)1.5380 (6)0.09824 (19)0.0870 (16)
H26A0.58431.46690.10870.104*
C270.6038 (6)1.6508 (8)0.1196 (2)0.108 (2)
H27A0.53921.65760.14490.129*
C280.6720 (9)1.7529 (7)0.1036 (2)0.120 (2)
H28A0.65491.83160.11750.144*
C290.7660 (9)1.7382 (7)0.0670 (3)0.140 (3)
H29A0.81161.80980.05620.168*
C300.1921 (5)0.8156 (5)0.15912 (17)0.0876 (15)
H30A0.15010.87000.14460.105*
H30B0.14060.79790.18870.105*
C310.0955 (5)0.6028 (6)0.13059 (16)0.0783 (15)
C320.0991 (6)0.6111 (7)0.15071 (19)0.105 (2)
H32A0.17020.65220.16430.126*
C330.1041 (5)0.4911 (7)0.13345 (17)0.0944 (18)
H33A0.17500.45130.13560.113*
C340.0034 (5)0.4348 (6)0.11291 (15)0.0763 (15)
C350.0108 (5)0.3091 (5)0.09093 (16)0.0720 (13)
C360.1165 (5)0.2639 (6)0.06459 (16)0.0807 (15)
H36A0.18450.31230.05980.097*
C370.1220 (6)0.1456 (7)0.04502 (18)0.0881 (16)
H37A0.19300.11200.02730.106*
C380.0216 (8)0.0821 (6)0.0527 (2)0.1056 (19)
H38A0.02160.00220.04030.127*
C390.0823 (7)0.1338 (7)0.0790 (2)0.1069 (19)
H39A0.15140.08770.08340.128*
N10.7367 (3)0.7132 (3)0.26700 (11)0.0583 (9)
N20.5992 (3)0.8731 (3)0.30604 (13)0.0677 (10)
N30.9526 (4)0.6468 (4)0.31899 (14)0.0890 (13)
N40.8019 (4)1.1798 (4)0.00566 (14)0.0881 (13)
N50.6858 (3)1.3116 (4)0.05227 (11)0.0648 (10)
N60.7987 (5)1.6291 (5)0.04492 (15)0.1137 (17)
N70.1042 (4)0.4918 (4)0.11146 (12)0.0690 (11)
N80.0016 (4)0.6716 (4)0.14938 (13)0.0852 (13)
N90.0891 (4)0.2464 (5)0.09860 (15)0.0893 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0783 (9)0.0869 (10)0.0638 (8)0.0206 (7)0.0263 (7)0.0125 (7)
S20.0980 (10)0.0786 (10)0.0728 (9)0.0051 (8)0.0046 (7)0.0037 (7)
S30.0623 (9)0.0896 (11)0.1195 (12)0.0098 (8)0.0202 (8)0.0139 (9)
C10.053 (3)0.069 (3)0.060 (3)0.010 (3)0.012 (3)0.002 (3)
C20.052 (3)0.071 (3)0.069 (3)0.015 (3)0.002 (3)0.005 (3)
C30.052 (3)0.072 (3)0.077 (3)0.010 (3)0.017 (3)0.004 (3)
C40.069 (3)0.079 (4)0.066 (3)0.019 (3)0.025 (3)0.001 (3)
C50.067 (3)0.061 (3)0.060 (3)0.011 (3)0.001 (3)0.001 (2)
C60.058 (3)0.067 (3)0.055 (3)0.013 (3)0.007 (3)0.006 (3)
C70.096 (4)0.097 (4)0.097 (4)0.001 (3)0.019 (3)0.030 (3)
C80.105 (4)0.119 (5)0.096 (4)0.006 (4)0.048 (4)0.022 (3)
C90.070 (3)0.096 (4)0.079 (3)0.002 (3)0.018 (3)0.009 (3)
C100.074 (3)0.084 (4)0.060 (3)0.018 (3)0.015 (3)0.005 (3)
C110.061 (3)0.062 (3)0.054 (3)0.008 (3)0.008 (2)0.008 (2)
C120.072 (4)0.084 (4)0.056 (3)0.004 (3)0.017 (3)0.016 (3)
C130.054 (3)0.085 (4)0.051 (3)0.002 (3)0.011 (2)0.005 (3)
C140.050 (3)0.058 (3)0.048 (3)0.008 (2)0.011 (2)0.002 (2)
C150.056 (3)0.070 (3)0.057 (3)0.004 (3)0.009 (3)0.006 (3)
C160.071 (4)0.089 (4)0.059 (3)0.011 (3)0.014 (3)0.008 (3)
C170.080 (4)0.092 (4)0.087 (4)0.021 (3)0.008 (4)0.013 (3)
C180.066 (4)0.106 (5)0.101 (5)0.018 (3)0.012 (4)0.010 (4)
C190.085 (5)0.132 (5)0.110 (5)0.024 (4)0.046 (4)0.010 (4)
C200.088 (4)0.072 (3)0.076 (3)0.017 (3)0.007 (3)0.003 (3)
C210.066 (3)0.080 (4)0.054 (3)0.015 (3)0.011 (3)0.001 (3)
C220.109 (5)0.090 (5)0.060 (3)0.007 (4)0.020 (3)0.003 (4)
C230.105 (5)0.096 (5)0.066 (4)0.005 (4)0.007 (3)0.012 (3)
C240.080 (4)0.073 (4)0.054 (3)0.006 (3)0.016 (3)0.010 (3)
C250.081 (4)0.083 (4)0.063 (3)0.006 (3)0.016 (3)0.004 (3)
C260.072 (4)0.096 (5)0.088 (4)0.000 (3)0.018 (3)0.024 (3)
C270.093 (5)0.115 (6)0.111 (5)0.007 (5)0.027 (4)0.029 (5)
C280.169 (7)0.094 (6)0.091 (5)0.047 (5)0.031 (5)0.023 (4)
C290.222 (9)0.072 (5)0.104 (5)0.009 (5)0.021 (6)0.000 (4)
C300.080 (4)0.078 (4)0.103 (4)0.013 (3)0.026 (3)0.010 (3)
C310.080 (4)0.087 (4)0.059 (3)0.010 (3)0.009 (3)0.014 (3)
C320.057 (4)0.162 (7)0.086 (4)0.028 (4)0.009 (3)0.022 (4)
C330.067 (4)0.146 (6)0.078 (4)0.009 (4)0.034 (3)0.021 (4)
C340.063 (4)0.104 (5)0.056 (3)0.015 (4)0.011 (3)0.014 (3)
C350.068 (4)0.090 (4)0.066 (3)0.004 (3)0.032 (3)0.007 (3)
C360.069 (4)0.107 (5)0.068 (3)0.007 (3)0.024 (3)0.003 (3)
C370.079 (4)0.103 (5)0.090 (4)0.006 (4)0.039 (3)0.008 (4)
C380.130 (6)0.111 (5)0.089 (4)0.001 (5)0.053 (5)0.006 (4)
C390.093 (5)0.121 (6)0.119 (5)0.009 (4)0.050 (4)0.010 (5)
N10.052 (2)0.058 (2)0.060 (2)0.004 (2)0.0120 (19)0.0016 (19)
N20.066 (3)0.068 (3)0.060 (2)0.004 (2)0.007 (2)0.014 (2)
N30.070 (3)0.115 (4)0.093 (3)0.023 (3)0.042 (3)0.023 (3)
N40.104 (4)0.083 (3)0.067 (3)0.014 (3)0.013 (3)0.007 (2)
N50.065 (3)0.074 (3)0.052 (2)0.013 (2)0.0129 (19)0.002 (2)
N60.162 (5)0.076 (3)0.079 (3)0.017 (4)0.003 (3)0.007 (3)
N70.055 (3)0.080 (3)0.073 (3)0.004 (2)0.021 (2)0.003 (2)
N80.059 (3)0.119 (4)0.080 (3)0.023 (3)0.024 (2)0.009 (3)
N90.074 (3)0.108 (4)0.093 (3)0.005 (3)0.036 (3)0.003 (3)
Geometric parameters (Å, º) top
S1—C111.768 (5)C18—H18A0.9300
S1—C101.805 (5)C19—N31.336 (7)
S2—C211.741 (5)C19—H19A0.9300
S2—C201.815 (4)C20—H20A0.9700
S3—C311.763 (6)C20—H20B0.9700
S3—C301.796 (5)C21—N51.323 (5)
C1—C21.361 (6)C21—N41.345 (6)
C1—C61.398 (6)C22—N41.335 (6)
C1—C101.527 (6)C22—C231.361 (6)
C2—C31.412 (6)C22—H22A0.9300
C2—C71.528 (6)C23—C241.400 (7)
C3—C41.390 (6)C23—H23A0.9300
C3—C301.497 (7)C24—N51.324 (6)
C4—C51.415 (7)C24—C251.478 (7)
C4—C81.511 (7)C25—N61.357 (6)
C5—C61.379 (7)C25—C261.358 (7)
C5—C201.510 (6)C26—C271.355 (7)
C6—C91.511 (7)C26—H26A0.9300
C7—H7A0.9600C27—C281.349 (8)
C7—H7B0.9600C27—H27A0.9300
C7—H7C0.9600C28—C291.352 (9)
C8—H8A0.9600C28—H28A0.9300
C8—H8B0.9600C29—N61.340 (7)
C8—H8C0.9600C29—H29A0.9300
C9—H9A0.9600C30—H30A0.9700
C9—H9B0.9600C30—H30B0.9700
C9—H9C0.9600C31—N71.307 (6)
C10—H10A0.9700C31—N81.339 (6)
C10—H10B0.9700C32—N81.319 (7)
C11—N21.330 (5)C32—C331.386 (7)
C11—N11.344 (5)C32—H32A0.9300
C12—N21.340 (6)C33—C341.380 (7)
C12—C131.371 (6)C33—H33A0.9300
C12—H12A0.9300C34—N71.334 (6)
C13—C141.353 (5)C34—C351.487 (7)
C13—H13A0.9300C35—N91.319 (6)
C14—N11.336 (5)C35—C361.365 (7)
C14—C151.484 (6)C36—C371.386 (7)
C15—N31.325 (6)C36—H36A0.9300
C15—C161.371 (6)C37—C381.328 (8)
C16—C171.370 (7)C37—H37A0.9300
C16—H16A0.9300C38—C391.375 (8)
C17—C181.352 (8)C38—H38A0.9300
C17—H17A0.9300C39—N91.329 (7)
C18—C191.328 (7)C39—H39A0.9300
C11—S1—C10103.1 (2)S2—C20—H20A109.2
C21—S2—C20100.7 (2)C5—C20—H20B109.2
C31—S3—C30103.7 (3)S2—C20—H20B109.2
C2—C1—C6120.3 (4)H20A—C20—H20B107.9
C2—C1—C10121.2 (4)N5—C21—N4126.1 (5)
C6—C1—C10118.5 (5)N5—C21—S2120.1 (4)
C1—C2—C3121.0 (4)N4—C21—S2113.7 (4)
C1—C2—C7121.1 (5)N4—C22—C23124.2 (5)
C3—C2—C7117.9 (5)N4—C22—H22A117.9
C4—C3—C2118.9 (5)C23—C22—H22A117.9
C4—C3—C30120.2 (5)C22—C23—C24116.3 (5)
C2—C3—C30120.8 (5)C22—C23—H23A121.9
C3—C4—C5119.7 (4)C24—C23—H23A121.9
C3—C4—C8120.4 (5)N5—C24—C23121.0 (5)
C5—C4—C8119.9 (5)N5—C24—C25116.1 (5)
C6—C5—C4120.0 (4)C23—C24—C25122.9 (5)
C6—C5—C20120.9 (5)N6—C25—C26123.1 (5)
C4—C5—C20119.0 (5)N6—C25—C24115.6 (5)
C5—C6—C1119.9 (5)C26—C25—C24121.3 (5)
C5—C6—C9118.9 (4)C27—C26—C25119.7 (6)
C1—C6—C9121.2 (4)C27—C26—H26A120.2
C2—C7—H7A109.5C25—C26—H26A120.2
C2—C7—H7B109.5C28—C27—C26119.2 (6)
H7A—C7—H7B109.5C28—C27—H27A120.4
C2—C7—H7C109.5C26—C27—H27A120.4
H7A—C7—H7C109.5C27—C28—C29118.3 (7)
H7B—C7—H7C109.5C27—C28—H28A120.8
C4—C8—H8A109.5C29—C28—H28A120.8
C4—C8—H8B109.5N6—C29—C28125.4 (7)
H8A—C8—H8B109.5N6—C29—H29A117.3
C4—C8—H8C109.5C28—C29—H29A117.3
H8A—C8—H8C109.5C3—C30—S3109.4 (3)
H8B—C8—H8C109.5C3—C30—H30A109.8
C6—C9—H9A109.5S3—C30—H30A109.8
C6—C9—H9B109.5C3—C30—H30B109.8
H9A—C9—H9B109.5S3—C30—H30B109.8
C6—C9—H9C109.5H30A—C30—H30B108.2
H9A—C9—H9C109.5N7—C31—N8128.5 (5)
H9B—C9—H9C109.5N7—C31—S3113.9 (4)
C1—C10—S1107.8 (3)N8—C31—S3117.5 (5)
C1—C10—H10A110.1N8—C32—C33125.1 (5)
S1—C10—H10A110.1N8—C32—H32A117.4
C1—C10—H10B110.1C33—C32—H32A117.4
S1—C10—H10B110.1C34—C33—C32115.4 (6)
H10A—C10—H10B108.5C34—C33—H33A122.3
N2—C11—N1128.4 (4)C32—C33—H33A122.3
N2—C11—S1119.6 (4)N7—C34—C33121.3 (6)
N1—C11—S1111.9 (3)N7—C34—C35117.7 (5)
N2—C12—C13124.1 (4)C33—C34—C35120.9 (6)
N2—C12—H12A117.9N9—C35—C36123.3 (5)
C13—C12—H12A117.9N9—C35—C34116.2 (5)
C14—C13—C12117.3 (4)C36—C35—C34120.4 (6)
C14—C13—H13A121.4C35—C36—C37119.6 (6)
C12—C13—H13A121.4C35—C36—H36A120.2
N1—C14—C13122.1 (4)C37—C36—H36A120.2
N1—C14—C15115.0 (4)C38—C37—C36117.2 (6)
C13—C14—C15122.9 (4)C38—C37—H37A121.4
N3—C15—C16122.6 (5)C36—C37—H37A121.4
N3—C15—C14115.4 (4)C37—C38—C39120.4 (6)
C16—C15—C14122.0 (5)C37—C38—H38A119.8
C17—C16—C15118.3 (5)C39—C38—H38A119.8
C17—C16—H16A120.9N9—C39—C38123.3 (6)
C15—C16—H16A120.9N9—C39—H39A118.3
C18—C17—C16119.8 (5)C38—C39—H39A118.4
C18—C17—H17A120.1C14—N1—C11115.2 (4)
C16—C17—H17A120.1C11—N2—C12112.9 (4)
C19—C18—C17117.7 (6)C15—N3—C19116.0 (5)
C19—C18—H18A121.1C22—N4—C21114.6 (4)
C17—C18—H18A121.1C21—N5—C24117.8 (4)
C18—C19—N3125.5 (6)C29—N6—C25114.2 (5)
C18—C19—H19A117.2C31—N7—C34116.6 (5)
N3—C19—H19A117.2C32—N8—C31112.8 (5)
C5—C20—S2112.0 (3)C35—N9—C39116.2 (5)
C5—C20—H20A109.2
C6—C1—C2—C34.4 (7)N6—C25—C26—C271.4 (8)
C10—C1—C2—C3177.6 (4)C24—C25—C26—C27178.2 (5)
C6—C1—C2—C7176.3 (4)C25—C26—C27—C280.4 (9)
C10—C1—C2—C71.6 (6)C26—C27—C28—C290.8 (10)
C1—C2—C3—C43.1 (7)C27—C28—C29—N60.7 (12)
C7—C2—C3—C4177.7 (4)C4—C3—C30—S390.2 (5)
C1—C2—C3—C30174.0 (4)C2—C3—C30—S392.7 (5)
C7—C2—C3—C305.2 (6)C31—S3—C30—C3178.6 (4)
C2—C3—C4—C51.6 (6)C30—S3—C31—N7177.8 (4)
C30—C3—C4—C5175.5 (4)C30—S3—C31—N84.4 (4)
C2—C3—C4—C8179.3 (4)N8—C32—C33—C341.1 (8)
C30—C3—C4—C83.6 (7)C32—C33—C34—N72.2 (7)
C3—C4—C5—C61.6 (7)C32—C33—C34—C35176.8 (4)
C8—C4—C5—C6179.3 (4)N7—C34—C35—N9169.9 (4)
C3—C4—C5—C20176.2 (4)C33—C34—C35—N911.1 (7)
C8—C4—C5—C202.9 (6)N7—C34—C35—C369.9 (6)
C4—C5—C6—C12.9 (6)C33—C34—C35—C36169.1 (5)
C20—C5—C6—C1174.9 (4)N9—C35—C36—C371.0 (7)
C4—C5—C6—C9177.2 (4)C34—C35—C36—C37178.8 (4)
C20—C5—C6—C94.9 (6)C35—C36—C37—C380.9 (7)
C2—C1—C6—C54.4 (6)C36—C37—C38—C390.1 (8)
C10—C1—C6—C5177.6 (4)C37—C38—C39—N91.2 (9)
C2—C1—C6—C9175.8 (4)C13—C14—N1—C110.3 (6)
C10—C1—C6—C92.2 (6)C15—C14—N1—C11177.5 (3)
C2—C1—C10—S188.1 (5)N2—C11—N1—C140.3 (6)
C6—C1—C10—S189.9 (4)S1—C11—N1—C14177.2 (3)
C11—S1—C10—C1171.6 (3)N1—C11—N2—C120.5 (6)
C10—S1—C11—N24.4 (4)S1—C11—N2—C12177.2 (3)
C10—S1—C11—N1172.8 (3)C13—C12—N2—C110.0 (6)
N2—C12—C13—C140.6 (7)C16—C15—N3—C191.3 (7)
C12—C13—C14—N10.7 (6)C14—C15—N3—C19178.9 (4)
C12—C13—C14—C15176.9 (4)C18—C19—N3—C152.4 (9)
N1—C14—C15—N3172.9 (4)C23—C22—N4—C210.7 (8)
C13—C14—C15—N34.8 (6)N5—C21—N4—C221.3 (7)
N1—C14—C15—C167.2 (6)S2—C21—N4—C22175.8 (4)
C13—C14—C15—C16175.0 (4)N4—C21—N5—C240.6 (7)
N3—C15—C16—C170.8 (7)S2—C21—N5—C24176.3 (3)
C14—C15—C16—C17179.4 (4)C23—C24—N5—C210.6 (7)
C15—C16—C17—C181.2 (8)C25—C24—N5—C21179.2 (4)
C16—C17—C18—C192.2 (8)C28—C29—N6—C252.3 (10)
C17—C18—C19—N32.9 (9)C26—C25—N6—C292.7 (8)
C6—C5—C20—S294.4 (5)C24—C25—N6—C29177.0 (5)
C4—C5—C20—S287.7 (5)N8—C31—N7—C344.6 (7)
C21—S2—C20—C5157.7 (4)S3—C31—N7—C34177.9 (3)
C20—S2—C21—N54.7 (4)C33—C34—N7—C310.3 (7)
C20—S2—C21—N4178.0 (4)C35—C34—N7—C31179.3 (4)
N4—C22—C23—C240.4 (9)C33—C32—N8—C312.2 (8)
C22—C23—C24—N51.1 (7)N7—C31—N8—C325.4 (7)
C22—C23—C24—C25179.6 (5)S3—C31—N8—C32177.2 (4)
N5—C24—C25—N6180.0 (5)C36—C35—N9—C390.1 (7)
C23—C24—C25—N61.5 (7)C34—C35—N9—C39179.8 (4)
N5—C24—C25—C260.3 (7)C38—C39—N9—C351.0 (8)
C23—C24—C25—C26178.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20A···N50.972.392.818 (6)106
C26—H26A···N50.932.452.767 (7)100
C36—H36A···N70.932.492.806 (7)100

Experimental details

Crystal data
Chemical formulaC39H33N9S3
Mr723.92
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.966 (2), 10.520 (2), 31.959 (6)
β (°) 108.369 (6)
V3)3818.1 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.944, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
17715, 6544, 2957
Rint0.107
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.163, 1.08
No. of reflections6544
No. of parameters460
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.26

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20A···N50.97002.39002.818 (6)106.00
C26—H26A···N50.93002.45002.767 (7)100.00
C36—H36A···N70.93002.49002.806 (7)100.00
 

Acknowledgements

The authors thank the Program for Young Excellent Talents in Southeast University for financial support.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, H. Z., Yang, J., Liu, X. & Gou, S. H. (2008a). Inorg. Chem. 47, 2913–2915.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDong, H. Z., Zhu, H. B., Liu, X. & Gou, S. H. (2008b). Polyhedron, 27, 2167–2174.  Web of Science CSD CrossRef CAS Google Scholar
First citationHammes, B. S., Ramos-Maldonado, D., Yap, G. P. A., Rheingold, A. L., Young, V. G. & Borovik, A. S. (1998). Coord. Chem. Rev. 174, 241–253.  Web of Science CSD CrossRef CAS Google Scholar
First citationHiraoka, S., Harano, K., Shiro, M. & Shionoya, M. (2005). Angew. Chem. Int. Ed. 44, 2727–2731.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y.-W., Dong, H.-Z. & Cheng, L. (2008). Acta Cryst. E64, m868.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds