metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­[2-(1H-1,2,4-triazol-1-yl-κN4)pyrazine]cadmium(II)]-di-μ-thio­cyanato-κ2S:N;κ2N:S]

aDepartment of Chemistry and Chemical Engineering, Institute of Materials Chemistry, Binzhou University, Binzhou 256603, People's Republic of China, and bDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: honglizhang1968@yahoo.cn

(Received 6 July 2009; accepted 10 July 2009; online 18 July 2009)

The title compound, [Cd(NCS)2(C6H5N5)2]n, is a coordination polymer with the CdII centre located on a twofold rotation axis. The CdII centre assumes a distorted octa­hedral geometry. The thio­cyanate anions function as bridging ligands between the CdII centres, leading to a chain-like arrangement expanding along [001].

Related literature

For a related structure, see: Yang & Shi (2008[Yang, L. Y. & Shi, J. M. (2008). Acta Cryst. E64, m1387.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(NCS)2(C6H5N5)2]

  • Mr = 522.86

  • Monoclinic, C 2/c

  • a = 25.818 (4) Å

  • b = 7.4077 (10) Å

  • c = 11.0276 (15) Å

  • β = 113.843 (2)°

  • V = 1929.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.38 mm−1

  • T = 298 K

  • 0.41 × 0.21 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.602, Tmax = 0.770

  • 5381 measured reflections

  • 2085 independent reflections

  • 2005 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.058

  • S = 1.10

  • 2085 reflections

  • 133 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2-(1H-1,2,4-triazol-1-yl)pyrazine is similar to 2-(pyrazol-1-yl)pyrazine (Yang & Shi, 2008) and therefore it should act as a brdiging ligand. We are interested in synthesizing complexes with mixed bridging ligands and selected thiocyanato and 2-(1H-1,2,4-triazol-1-yl)pyrazine as ligands. However, 2-(1H-1,2,4-triazol-1-yl)pyrazine only functions as a terminal ligand.

The coordination geometry of the Cd centres is shown in Fig. 1. The Cd atom is in a distorted octahedral CdN4S2 coordination geometry. In the crystal each CdII ion is surrounded by two other symmetry-related CdII ions with separation with 5.7105 (7) Å and the adjacent CdII ions were bridged by two thiocyanato anions and it forms a one-dimensional chain along the c axis. 2-(1H-1,2,4-triazol-1-yl)pyrazine only acts as a monodentate ligand.

Related literature top

For a related structure, see: Yang & Shi (2008).

Experimental top

6 ml methanol solution of 2-(1H-1,2,4-triazol-1-yl)pyrazine (0.0345 g, 0.191 mmol), 5 ml C d(ClO4)2.6H2O (0.0809 g, 0.193 mmol) H2O solution and 5 ml NaSCN (0.0315 g, 0.389 mmol) H2O solution were mixed together and stirred for a few minutes. The colorless single crystals were obtained after the filtrate had been allowed to stand at room temperature for two weeks.

Refinement top

All H atoms were placed in calculated positions and refined as riding with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Coordination around the Cd atom with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) -x + 1, -y, -z + 1 (ii) -x + 1, y, -z + 3/2 (iii) x, -y, z + 1/2 (iv) -x + 1, -y, -z + 2]
[Figure 2] Fig. 2. Packing diagram of the title compound.
catena-Poly[[bis[2-(1H-1,2,4-triazol-1-yl- κN4)pyrazine]cadmium(II)]-di-µ-thiocyanato- κ2S:N;κ2N:S] top
Crystal data top
[Cd(NCS)2(C6H5N5)2]F(000) = 1032
Mr = 522.86Dx = 1.800 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4306 reflections
a = 25.818 (4) Åθ = 2.9–28.3°
b = 7.4077 (10) ŵ = 1.38 mm1
c = 11.0276 (15) ÅT = 298 K
β = 113.843 (2)°Block, colourless
V = 1929.1 (5) Å30.41 × 0.21 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2085 independent reflections
Radiation source: fine-focus sealed tube2005 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 3223
Tmin = 0.602, Tmax = 0.770k = 79
5381 measured reflectionsl = 1013
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0298P)2 + 1.3229P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.002
2085 reflectionsΔρmax = 0.35 e Å3
133 parametersΔρmin = 0.47 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0082 (3)
Crystal data top
[Cd(NCS)2(C6H5N5)2]V = 1929.1 (5) Å3
Mr = 522.86Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.818 (4) ŵ = 1.38 mm1
b = 7.4077 (10) ÅT = 298 K
c = 11.0276 (15) Å0.41 × 0.21 × 0.20 mm
β = 113.843 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2085 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2005 reflections with I > 2σ(I)
Tmin = 0.602, Tmax = 0.770Rint = 0.022
5381 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 1.10Δρmax = 0.35 e Å3
2085 reflectionsΔρmin = 0.47 e Å3
133 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.43493 (9)0.3626 (3)0.9002 (2)0.0392 (5)
H10.46360.34400.98380.047*
C20.39121 (9)0.3614 (3)0.6932 (2)0.0382 (4)
H20.38080.34570.60270.046*
C30.56274 (8)0.1295 (3)0.5829 (2)0.0334 (4)
C40.30256 (8)0.5013 (3)0.68395 (18)0.0322 (4)
C50.27688 (11)0.5921 (3)0.7544 (2)0.0455 (5)
H50.29740.61770.84370.055*
C60.22301 (10)0.5174 (4)0.4984 (2)0.0493 (5)
H60.20290.49490.40840.059*
C70.19638 (11)0.6044 (3)0.5671 (3)0.0505 (6)
H70.15860.63710.52260.061*
Cd10.50000.10030 (3)0.75000.03107 (10)
N10.43983 (7)0.3119 (2)0.78646 (17)0.0391 (4)
N20.55550 (9)0.1113 (3)0.47410 (19)0.0455 (5)
N30.35900 (7)0.4377 (2)0.74783 (16)0.0317 (3)
N40.38687 (8)0.4394 (2)0.88241 (17)0.0377 (4)
N50.27701 (8)0.4642 (3)0.55708 (17)0.0422 (4)
N60.22297 (9)0.6433 (3)0.6954 (2)0.0535 (5)
S10.57240 (3)0.15916 (10)0.73782 (5)0.05367 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0367 (11)0.0455 (11)0.0340 (10)0.0001 (9)0.0129 (9)0.0018 (9)
C20.0371 (11)0.0444 (11)0.0356 (10)0.0028 (9)0.0172 (9)0.0052 (8)
C30.0287 (9)0.0379 (10)0.0307 (10)0.0051 (7)0.0089 (8)0.0017 (7)
C40.0329 (9)0.0331 (9)0.0335 (10)0.0004 (7)0.0162 (8)0.0008 (7)
C50.0460 (13)0.0563 (14)0.0358 (11)0.0117 (10)0.0181 (10)0.0034 (9)
C60.0409 (12)0.0649 (15)0.0373 (11)0.0040 (11)0.0106 (9)0.0060 (10)
C70.0370 (12)0.0666 (16)0.0452 (14)0.0126 (10)0.0138 (11)0.0007 (10)
Cd10.03018 (13)0.03752 (14)0.02687 (13)0.0000.01294 (9)0.000
N10.0349 (9)0.0439 (10)0.0404 (9)0.0014 (7)0.0171 (7)0.0046 (8)
N20.0428 (10)0.0607 (12)0.0319 (10)0.0058 (8)0.0141 (8)0.0017 (8)
N30.0321 (8)0.0356 (8)0.0300 (8)0.0009 (6)0.0153 (7)0.0026 (6)
N40.0367 (9)0.0465 (9)0.0302 (9)0.0006 (7)0.0138 (7)0.0024 (7)
N50.0369 (9)0.0549 (10)0.0349 (9)0.0035 (8)0.0146 (7)0.0061 (8)
N60.0476 (11)0.0696 (13)0.0450 (11)0.0190 (10)0.0204 (9)0.0017 (10)
S10.0699 (4)0.0614 (4)0.0296 (3)0.0323 (3)0.0201 (3)0.0093 (2)
Geometric parameters (Å, º) top
C1—N41.306 (3)C6—N51.337 (3)
C1—N11.363 (3)C6—C71.372 (3)
C1—H10.9300C6—H60.9300
C2—N11.313 (3)C7—N61.331 (3)
C2—N31.334 (3)C7—H70.9300
C2—H20.9300Cd1—N2i2.3031 (19)
C3—N21.145 (3)Cd1—N2ii2.3031 (19)
C3—S11.639 (2)Cd1—N1iii2.3528 (18)
C4—N51.312 (3)Cd1—N12.3528 (17)
C4—C51.383 (3)Cd1—S1iii2.7220 (6)
C4—N31.418 (2)Cd1—S12.7220 (6)
C5—N61.331 (3)N2—Cd1ii2.3031 (19)
C5—H50.9300N3—N41.363 (2)
N4—C1—N1114.71 (19)N2ii—Cd1—N189.56 (7)
N4—C1—H1122.6N1iii—Cd1—N196.47 (9)
N1—C1—H1122.6N2i—Cd1—S1iii96.54 (5)
N1—C2—N3109.75 (19)N2ii—Cd1—S1iii86.34 (5)
N1—C2—H2125.1N1iii—Cd1—S1iii173.10 (5)
N3—C2—H2125.1N1—Cd1—S1iii87.01 (5)
N2—C3—S1178.9 (2)N2i—Cd1—S186.34 (5)
N5—C4—C5123.5 (2)N2ii—Cd1—S196.54 (5)
N5—C4—N3115.64 (17)N1iii—Cd1—S187.01 (5)
C5—C4—N3120.82 (18)N1—Cd1—S1173.10 (5)
N6—C5—C4120.5 (2)S1iii—Cd1—S190.16 (4)
N6—C5—H5119.7C2—N1—C1103.22 (18)
C4—C5—H5119.7C2—N1—Cd1122.72 (14)
N5—C6—C7121.9 (2)C1—N1—Cd1130.85 (14)
N5—C6—H6119.1C3—N2—Cd1ii153.59 (19)
C7—C6—H6119.1C2—N3—N4110.16 (17)
N6—C7—C6122.0 (2)C2—N3—C4128.28 (17)
N6—C7—H7119.0N4—N3—C4121.46 (16)
C6—C7—H7119.0C1—N4—N3102.16 (16)
N2i—Cd1—N2ii175.94 (10)C4—N5—C6115.50 (19)
N2i—Cd1—N1iii89.56 (7)C7—N6—C5116.5 (2)
N2ii—Cd1—N1iii87.73 (7)C3—S1—Cd197.98 (7)
N2i—Cd1—N187.73 (7)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z+1; (iii) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Cd(NCS)2(C6H5N5)2]
Mr522.86
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)25.818 (4), 7.4077 (10), 11.0276 (15)
β (°) 113.843 (2)
V3)1929.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.38
Crystal size (mm)0.41 × 0.21 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.602, 0.770
No. of measured, independent and
observed [I > 2σ(I)] reflections
5381, 2085, 2005
Rint0.022
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.058, 1.10
No. of reflections2085
No. of parameters133
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.47

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Project of Scientific Studies Development of Shandong Provincial Education Department (grant No. J08LC51) and the Natural Science Foundation of Shandong Province (grant No. Y2007B26).

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L. Y. & Shi, J. M. (2008). Acta Cryst. E64, m1387.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds