organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-(3,4-di­meth­oxy­benz­yl)-1-phenyl­sulfonyl-1H-indole-3-carboxyl­ate

aDepartment of Physics, AMET University, Kanathur, Chennai 603 112, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, and dDepartment of Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India
*Correspondence e-mail: manivan_1999@yahoo.com

(Received 7 July 2009; accepted 7 July 2009; online 15 July 2009)

In the title compound, C26H25NO6S, the phenyl ring forms a dihedral angle of 82.5 (1)° with the indole ring system. The mol­ecular structure is stabilized by weak intra­molecular C—H⋯O inter­actions and the crystal structure is stabilized by weak inter­molecular C—H⋯O inter­actions.

Related literature

For the biological activity of indoles see: Macor et al. (1992[Macor, J. E., Fox, C. B., Johnson, C., Koe, B. K., Lebel, L. A. & Zorn, S. H. (1992). J. Med. Chem. 35, 3625-3632.]); Williams et al. (1993[Williams, T. M., Ciccarone, T. M., MacTough, S. C., Rooney, C. S., Balani, S. K., Condra, J. H., Emini, E. A., Goldman, M. E., Greenlee, W. J. & Kauffman, L. R. (1993). J. Med. Chem. 36, 1291-1294.]); For related structures, see: Chakkaravarthi et al. (2007[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, o3698.], 2008[Chakkaravarthi, G., Sureshbabu, R., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o732.]). For graph set notation see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C26H25NO6S

  • Mr = 479.53

  • Triclinic, [P \overline 1]

  • a = 9.2914 (3) Å

  • b = 9.3008 (3) Å

  • c = 14.1561 (5) Å

  • α = 87.367 (2)°

  • β = 76.158 (2)°

  • γ = 87.877 (2)°

  • V = 1186.13 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 295 K

  • 0.24 × 0.20 × 0.16 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.958, Tmax = 0.972

  • 26965 measured reflections

  • 5046 independent reflections

  • 3632 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.124

  • S = 1.03

  • 5046 reflections

  • 310 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1 0.93 2.56 2.911 (3) 103
C8—H8⋯O2 0.93 2.31 2.894 (3) 121
C11—H11⋯O4 0.93 2.36 2.885 (2) 115
C18—H18A⋯O1 0.97 2.23 2.855 (3) 122
C18—H18B⋯O3 0.97 2.33 2.930 (3) 119
C25—H25B⋯O1i 0.96 2.38 3.231 (3) 147
C9—H9⋯O2ii 0.93 2.58 3.503 (3) 174
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The chemistry of indole has been of increasing interest, since several compounds of this type possess diverse biological activities (Macor et al., 1992). In addition, phenylsulfonyl indole compounds inhibit the HIV-1 RT enzyme in vitro and HTLVIIIb viral spread in MT-4 human T-lymphoid cells (Williams et al., 1993).

The geometric parameters of the title compound, (I), (Fig. 1) agree well with the reported similar structures (Chakkaravarthi et al., 2007; Chakkaravarthi et al., 2008). The phenyl ring makes a dihedral angle of 82.5 (1)° with the indole ring system. The two aromatic rings C1—C6 and C19—C24 are inclined at an angle of 44.2 (1)° with respect to each other. The sum of the bond angles around N1 [358.8 (5)°] indicate the sp2 hybridized state. The torsion angles O1—S1—N1—C14 and O2—S1—N1—C7 [27.8 (2) ° and -37.1 (2) °, respectively] indicate the syn conformation of the sulfonyl moiety.

A distorted tetrahedral geometry [O1—S1—O2 = 120.4 (1) ° and O1—S1—N1 = 106.9 (1) °] around S1 is observed. The widening of the angles may be due to repulsive interactions between the two short S=O bonds.

The molecular structure is stabilized by weak intramolecular C—H···O interactions and the crystal packing is stabilized by weak intermolecular C—H···O interactions. The C6—H6···O1 interaction generate an S(5) graph set motif and C8—H8···O2 and C11—H11···O4 interactions generate S(6) graph set motifs (Bernstein et al., 1995).

Related literature top

For the biological activity of Indoles see: Macor et al. (1992); Williams et al. (1993); For related literature see: Chakkaravarthi et al. (2007, 2008). For graph set notation see: Bernstein et al. (1995).

Experimental top

Ethyl 2-(acetoxymethyl)-1-(phenylsulfonyl)-1H-indole-3-carboxylate (0.39 g, 0.97 mmol) was dissolved in dry 1,2-dichloroethane (15 ml). To this, anhydrous Ferric chloride (0.02 g, 0.09 mmoL) and 1,2-dimethoxy benzene (0.15 ml, 1.16 mmoL) were added under nitrogen atmosphere. It was refluxed for 5 hr and cooled to room temperature. Ferric chloride was carefully filtered off and the filtrate was poured to water (50 ml) and extracted with chloroform (30 ml). The organic layer was separated and dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure to give the product. It was recrystallized from methanol. Yield: 0.28 g (61%), M.Pt: 134–136°C.

Refinement top

H atoms were positioned geometrically and refined using riding model with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H, C—H = 0.97Å and Uiso(H) = 1.2Ueq(C) for CH2, C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for CH3.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the a axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
Ethyl 2-(3,4-dimethoxybenzyl)-1-phenylsulfonyl-1H-indole-3-carboxylate top
Crystal data top
C26H25NO6SZ = 2
Mr = 479.53F(000) = 504
Triclinic, P1Dx = 1.343 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2914 (3) ÅCell parameters from 5120 reflections
b = 9.3008 (3) Åθ = 2.4–25.1°
c = 14.1561 (5) ŵ = 0.18 mm1
α = 87.367 (2)°T = 295 K
β = 76.158 (2)°Block, colourless
γ = 87.877 (2)°0.24 × 0.20 × 0.16 mm
V = 1186.13 (7) Å3
Data collection top
Bruker Kappa APEX2
diffractometer
5046 independent reflections
Radiation source: fine-focus sealed tube3632 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and ϕ scansθmax = 26.8°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.958, Tmax = 0.972k = 1111
26965 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.284P]
where P = (Fo2 + 2Fc2)/3
5046 reflections(Δ/σ)max < 0.001
310 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C26H25NO6Sγ = 87.877 (2)°
Mr = 479.53V = 1186.13 (7) Å3
Triclinic, P1Z = 2
a = 9.2914 (3) ÅMo Kα radiation
b = 9.3008 (3) ŵ = 0.18 mm1
c = 14.1561 (5) ÅT = 295 K
α = 87.367 (2)°0.24 × 0.20 × 0.16 mm
β = 76.158 (2)°
Data collection top
Bruker Kappa APEX2
diffractometer
5046 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3632 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.972Rint = 0.025
26965 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.03Δρmax = 0.18 e Å3
5046 reflectionsΔρmin = 0.29 e Å3
310 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.13534 (6)0.05077 (5)0.22554 (4)0.06267 (17)
O40.19660 (14)0.34677 (15)0.01641 (10)0.0687 (4)
N10.06324 (16)0.04353 (16)0.14286 (11)0.0546 (4)
O20.26358 (17)0.12263 (15)0.17097 (12)0.0813 (4)
O10.01860 (18)0.13039 (16)0.28540 (12)0.0863 (5)
C120.05829 (19)0.2019 (2)0.01735 (12)0.0534 (4)
O50.2124 (3)0.48992 (18)0.40802 (13)0.1186 (7)
O30.34719 (17)0.2500 (2)0.11472 (13)0.1079 (6)
C240.3063 (2)0.0625 (2)0.41242 (14)0.0635 (5)
H240.32680.03500.41580.076*
C190.24165 (19)0.12692 (19)0.32427 (13)0.0548 (4)
C130.08945 (18)0.1877 (2)0.07827 (13)0.0540 (4)
C10.19069 (19)0.07726 (18)0.29540 (13)0.0532 (4)
C140.08487 (18)0.09319 (19)0.15310 (13)0.0536 (4)
C20.3292 (2)0.1354 (2)0.26491 (14)0.0611 (5)
H20.39280.10830.20680.073*
C200.2098 (2)0.2712 (2)0.32182 (13)0.0633 (5)
H200.16520.31680.26280.076*
C180.2119 (2)0.0430 (2)0.23233 (14)0.0632 (5)
H18A0.19320.05720.24890.076*
H18B0.30060.04770.20750.076*
C70.15157 (19)0.11180 (19)0.05862 (13)0.0530 (4)
O60.3423 (2)0.3687 (2)0.57147 (12)0.1124 (7)
C80.3023 (2)0.0979 (2)0.01668 (15)0.0659 (5)
H80.36350.03640.04430.079*
C150.2254 (2)0.2614 (2)0.06311 (15)0.0637 (5)
C100.2676 (2)0.2679 (3)0.10809 (15)0.0771 (6)
H100.30860.32100.16480.092*
C230.3416 (2)0.1395 (3)0.49619 (15)0.0721 (6)
H230.38620.09370.55520.087*
C220.3116 (2)0.2824 (2)0.49306 (14)0.0734 (6)
C30.3721 (2)0.2339 (2)0.32159 (16)0.0724 (6)
H30.46530.27390.30190.087*
C110.1178 (2)0.2816 (2)0.06740 (14)0.0677 (5)
H110.05770.34290.09610.081*
C60.0959 (2)0.1151 (3)0.38187 (15)0.0730 (6)
H60.00310.07440.40240.088*
C210.2426 (3)0.3481 (2)0.40464 (15)0.0719 (6)
C90.3577 (2)0.1780 (3)0.06701 (16)0.0741 (6)
H90.45840.17110.09650.089*
C160.3218 (3)0.4260 (2)0.03882 (19)0.0812 (6)
H16A0.36490.49080.01280.097*
H16B0.39710.36020.04530.097*
C50.1408 (3)0.2136 (3)0.43708 (17)0.0882 (7)
H50.07770.24050.49550.106*
C40.2778 (3)0.2730 (3)0.40702 (17)0.0809 (6)
H40.30680.34040.44490.097*
C170.2667 (3)0.5085 (3)0.1315 (2)0.1058 (9)
H17A0.19230.57320.12410.159*
H17B0.34750.56270.14840.159*
H17C0.22470.44330.18200.159*
C250.1090 (5)0.5491 (3)0.3324 (2)0.170 (2)
H25A0.01500.50040.32840.255*
H25B0.10030.64930.34300.255*
H25C0.13900.53920.27280.255*
C260.4361 (4)0.3220 (4)0.65636 (19)0.1280 (12)
H26A0.52900.29740.64370.192*
H26B0.45240.39710.70240.192*
H26C0.39270.23880.68260.192*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0670 (3)0.0450 (3)0.0787 (3)0.0027 (2)0.0224 (2)0.0013 (2)
O40.0577 (8)0.0723 (9)0.0770 (9)0.0095 (6)0.0196 (7)0.0045 (7)
N10.0505 (8)0.0554 (8)0.0594 (9)0.0013 (6)0.0142 (7)0.0106 (7)
O20.0858 (10)0.0559 (8)0.1053 (12)0.0212 (7)0.0288 (9)0.0201 (8)
O10.0913 (11)0.0628 (9)0.1081 (12)0.0266 (8)0.0310 (9)0.0210 (8)
C120.0492 (9)0.0633 (11)0.0486 (10)0.0017 (8)0.0110 (7)0.0180 (8)
O50.183 (2)0.0696 (10)0.0809 (11)0.0411 (12)0.0196 (12)0.0157 (9)
O30.0499 (8)0.1632 (18)0.0973 (12)0.0196 (10)0.0004 (8)0.0213 (12)
C240.0580 (11)0.0606 (11)0.0689 (13)0.0168 (9)0.0097 (9)0.0126 (10)
C190.0467 (9)0.0563 (10)0.0592 (11)0.0086 (8)0.0079 (8)0.0014 (8)
C130.0466 (9)0.0643 (11)0.0515 (10)0.0006 (8)0.0106 (7)0.0143 (9)
C10.0537 (10)0.0507 (10)0.0561 (10)0.0013 (8)0.0166 (8)0.0045 (8)
C140.0486 (9)0.0563 (10)0.0577 (10)0.0051 (8)0.0130 (8)0.0162 (8)
C20.0586 (11)0.0645 (11)0.0599 (11)0.0039 (9)0.0135 (9)0.0014 (9)
C200.0734 (12)0.0599 (11)0.0489 (10)0.0141 (9)0.0015 (9)0.0043 (8)
C180.0546 (10)0.0623 (11)0.0725 (12)0.0128 (9)0.0123 (9)0.0068 (9)
C70.0496 (9)0.0565 (10)0.0540 (10)0.0004 (8)0.0112 (8)0.0185 (8)
O60.1424 (17)0.1171 (14)0.0607 (10)0.0368 (12)0.0179 (10)0.0204 (9)
C80.0511 (10)0.0770 (13)0.0694 (13)0.0075 (9)0.0123 (9)0.0190 (10)
C150.0533 (11)0.0792 (13)0.0597 (12)0.0057 (9)0.0148 (9)0.0144 (10)
C100.0677 (13)0.1025 (17)0.0533 (11)0.0056 (12)0.0022 (10)0.0074 (11)
C230.0682 (12)0.0859 (15)0.0555 (12)0.0210 (11)0.0023 (9)0.0174 (11)
C220.0777 (14)0.0842 (15)0.0511 (11)0.0149 (11)0.0008 (10)0.0037 (10)
C30.0688 (13)0.0759 (13)0.0768 (14)0.0156 (10)0.0245 (11)0.0005 (11)
C110.0611 (11)0.0893 (15)0.0502 (11)0.0036 (10)0.0086 (9)0.0067 (10)
C60.0588 (11)0.0993 (16)0.0610 (12)0.0080 (11)0.0135 (9)0.0048 (11)
C210.0886 (15)0.0598 (12)0.0582 (12)0.0186 (10)0.0031 (10)0.0015 (9)
C90.0508 (10)0.0985 (16)0.0684 (13)0.0021 (11)0.0018 (10)0.0234 (12)
C160.0718 (13)0.0725 (14)0.1077 (18)0.0176 (11)0.0386 (13)0.0152 (13)
C50.0776 (15)0.124 (2)0.0647 (13)0.0054 (14)0.0168 (11)0.0265 (13)
C40.0899 (16)0.0852 (15)0.0768 (15)0.0024 (13)0.0356 (13)0.0175 (12)
C170.122 (2)0.0814 (17)0.124 (2)0.0123 (16)0.0544 (19)0.0124 (16)
C250.293 (5)0.085 (2)0.100 (2)0.092 (3)0.029 (3)0.0008 (17)
C260.153 (3)0.151 (3)0.0598 (15)0.021 (2)0.0180 (17)0.0110 (16)
Geometric parameters (Å, º) top
S1—O11.4160 (15)O6—C261.368 (3)
S1—O21.4182 (15)O6—C221.368 (3)
S1—N11.6809 (16)C8—C91.371 (3)
S1—C11.7485 (18)C8—H80.9300
O4—C151.326 (2)C10—C91.369 (3)
O4—C161.445 (2)C10—C111.377 (3)
N1—C141.411 (2)C10—H100.9300
N1—C71.414 (2)C23—C221.365 (3)
C12—C111.387 (3)C23—H230.9300
C12—C71.392 (3)C22—C211.388 (3)
C12—C131.443 (2)C3—C41.369 (3)
O5—C211.363 (3)C3—H30.9300
O5—C251.365 (3)C11—H110.9300
O3—C151.196 (2)C6—C51.369 (3)
C24—C191.370 (2)C6—H60.9300
C24—C231.379 (3)C9—H90.9300
C24—H240.9300C16—C171.479 (4)
C19—C201.382 (2)C16—H16A0.9700
C19—C181.511 (3)C16—H16B0.9700
C13—C141.353 (3)C5—C41.370 (3)
C13—C151.471 (3)C5—H50.9300
C1—C61.378 (3)C4—H40.9300
C1—C21.378 (3)C17—H17A0.9600
C14—C181.492 (3)C17—H17B0.9600
C2—C31.375 (3)C17—H17C0.9600
C2—H20.9300C25—H25A0.9600
C20—C211.367 (3)C25—H25B0.9600
C20—H200.9300C25—H25C0.9600
C18—H18A0.9700C26—H26A0.9600
C18—H18B0.9700C26—H26B0.9600
C7—C81.388 (2)C26—H26C0.9600
O1—S1—O2120.38 (10)C11—C10—H10119.2
O1—S1—N1106.84 (9)C22—C23—C24120.41 (18)
O2—S1—N1105.33 (9)C22—C23—H23119.8
O1—S1—C1108.93 (9)C24—C23—H23119.8
O2—S1—C1108.65 (9)C23—C22—O6125.20 (19)
N1—S1—C1105.74 (8)C23—C22—C21118.95 (19)
C15—O4—C16116.22 (16)O6—C22—C21115.85 (19)
C14—N1—C7108.32 (15)C4—C3—C2120.0 (2)
C14—N1—S1127.51 (13)C4—C3—H3120.0
C7—N1—S1122.95 (12)C2—C3—H3120.0
C11—C12—C7119.17 (17)C10—C11—C12118.6 (2)
C11—C12—C13133.86 (18)C10—C11—H11120.7
C7—C12—C13106.97 (16)C12—C11—H11120.7
C21—O5—C25117.9 (2)C5—C6—C1118.8 (2)
C19—C24—C23121.22 (18)C5—C6—H6120.6
C19—C24—H24119.4C1—C6—H6120.6
C23—C24—H24119.4O5—C21—C20124.45 (18)
C24—C19—C20118.07 (17)O5—C21—C22115.43 (18)
C24—C19—C18120.49 (17)C20—C21—C22120.12 (19)
C20—C19—C18121.41 (16)C10—C9—C8121.29 (19)
C14—C13—C12109.01 (16)C10—C9—H9119.4
C14—C13—C15124.31 (16)C8—C9—H9119.4
C12—C13—C15126.68 (17)O4—C16—C17107.4 (2)
C6—C1—C2121.12 (18)O4—C16—H16A110.2
C6—C1—S1119.04 (15)C17—C16—H16A110.2
C2—C1—S1119.81 (14)O4—C16—H16B110.2
C13—C14—N1108.19 (15)C17—C16—H16B110.2
C13—C14—C18127.54 (17)H16A—C16—H16B108.5
N1—C14—C18124.23 (17)C6—C5—C4120.5 (2)
C3—C2—C1119.09 (19)C6—C5—H5119.7
C3—C2—H2120.5C4—C5—H5119.7
C1—C2—H2120.5C3—C4—C5120.4 (2)
C21—C20—C19121.20 (17)C3—C4—H4119.8
C21—C20—H20119.4C5—C4—H4119.8
C19—C20—H20119.4C16—C17—H17A109.5
C14—C18—C19115.27 (15)C16—C17—H17B109.5
C14—C18—H18A108.5H17A—C17—H17B109.5
C19—C18—H18A108.5C16—C17—H17C109.5
C14—C18—H18B108.5H17A—C17—H17C109.5
C19—C18—H18B108.5H17B—C17—H17C109.5
H18A—C18—H18B107.5O5—C25—H25A109.5
C8—C7—C12121.86 (18)O5—C25—H25B109.5
C8—C7—N1130.62 (18)H25A—C25—H25B109.5
C12—C7—N1107.51 (15)O5—C25—H25C109.5
C26—O6—C22119.5 (2)H25A—C25—H25C109.5
C9—C8—C7117.6 (2)H25B—C25—H25C109.5
C9—C8—H8121.2O6—C26—H26A109.5
C7—C8—H8121.2O6—C26—H26B109.5
O3—C15—O4122.87 (19)H26A—C26—H26B109.5
O3—C15—C13126.1 (2)O6—C26—H26C109.5
O4—C15—C13111.03 (16)H26A—C26—H26C109.5
C9—C10—C11121.5 (2)H26B—C26—H26C109.5
C9—C10—H10119.2
O1—S1—N1—C1427.85 (17)C14—N1—C7—C8178.86 (17)
O2—S1—N1—C14156.95 (14)S1—N1—C7—C812.9 (3)
C1—S1—N1—C1488.10 (15)C14—N1—C7—C120.29 (18)
O1—S1—N1—C7166.29 (13)S1—N1—C7—C12168.52 (11)
O2—S1—N1—C737.18 (15)C12—C7—C8—C90.8 (3)
C1—S1—N1—C777.77 (14)N1—C7—C8—C9179.23 (17)
C23—C24—C19—C201.3 (3)C16—O4—C15—O30.6 (3)
C23—C24—C19—C18176.42 (18)C16—O4—C15—C13179.67 (16)
C11—C12—C13—C14179.75 (19)C14—C13—C15—O31.4 (3)
C7—C12—C13—C140.14 (19)C12—C13—C15—O3179.1 (2)
C11—C12—C13—C150.2 (3)C14—C13—C15—O4179.51 (16)
C7—C12—C13—C15179.39 (16)C12—C13—C15—O40.1 (3)
O1—S1—C1—C619.05 (18)C19—C24—C23—C220.5 (3)
O2—S1—C1—C6151.89 (16)C24—C23—C22—O6179.8 (2)
N1—S1—C1—C695.47 (16)C24—C23—C22—C211.2 (3)
O1—S1—C1—C2159.04 (15)C26—O6—C22—C2314.4 (4)
O2—S1—C1—C226.20 (17)C26—O6—C22—C21166.6 (3)
N1—S1—C1—C286.45 (16)C1—C2—C3—C40.0 (3)
C12—C13—C14—N10.32 (19)C9—C10—C11—C120.2 (3)
C15—C13—C14—N1179.22 (16)C7—C12—C11—C100.3 (3)
C12—C13—C14—C18178.34 (16)C13—C12—C11—C10179.24 (19)
C15—C13—C14—C181.2 (3)C2—C1—C6—C50.9 (3)
C7—N1—C14—C130.38 (18)S1—C1—C6—C5178.94 (18)
S1—N1—C14—C13167.92 (12)C25—O5—C21—C2018.9 (5)
C7—N1—C14—C18178.48 (15)C25—O5—C21—C22161.3 (3)
S1—N1—C14—C1814.0 (2)C19—C20—C21—O5179.0 (2)
C6—C1—C2—C30.7 (3)C19—C20—C21—C221.2 (3)
S1—C1—C2—C3178.79 (15)C23—C22—C21—O5178.2 (2)
C24—C19—C20—C210.5 (3)O6—C22—C21—O50.9 (3)
C18—C19—C20—C21177.3 (2)C23—C22—C21—C202.0 (4)
C13—C14—C18—C1993.4 (2)O6—C22—C21—C20178.9 (2)
N1—C14—C18—C1988.8 (2)C11—C10—C9—C80.2 (3)
C24—C19—C18—C14152.33 (18)C7—C8—C9—C100.3 (3)
C20—C19—C18—C1430.0 (3)C15—O4—C16—C17177.62 (19)
C11—C12—C7—C80.9 (3)C1—C6—C5—C40.3 (4)
C13—C12—C7—C8178.82 (16)C2—C3—C4—C50.6 (4)
C11—C12—C7—N1179.58 (15)C6—C5—C4—C30.4 (4)
C13—C12—C7—N10.10 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.932.562.911 (3)103
C8—H8···O20.932.312.894 (3)121
C11—H11···O40.932.362.885 (2)115
C18—H18A···O10.972.232.855 (3)122
C18—H18B···O30.972.332.930 (3)119
C25—H25B···O1i0.962.383.231 (3)147
C9—H9···O2ii0.932.583.503 (3)174
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC26H25NO6S
Mr479.53
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.2914 (3), 9.3008 (3), 14.1561 (5)
α, β, γ (°)87.367 (2), 76.158 (2), 87.877 (2)
V3)1186.13 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.24 × 0.20 × 0.16
Data collection
DiffractometerBruker Kappa APEX2
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.958, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
26965, 5046, 3632
Rint0.025
(sin θ/λ)max1)0.635
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.124, 1.03
No. of reflections5046
No. of parameters310
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.29

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.932.562.911 (3)103
C8—H8···O20.932.312.894 (3)121
C11—H11···O40.932.362.885 (2)115
C18—H18A···O10.972.232.855 (3)122
C18—H18B···O30.972.332.930 (3)119
C25—H25B···O1i0.962.383.231 (3)147
C9—H9···O2ii0.932.583.503 (3)174
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.
 

Acknowledgements

Author thanks AMET University management, India, for their kind support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, o3698.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChakkaravarthi, G., Sureshbabu, R., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o732.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacor, J. E., Fox, C. B., Johnson, C., Koe, B. K., Lebel, L. A. & Zorn, S. H. (1992). J. Med. Chem. 35, 3625–3632.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, T. M., Ciccarone, T. M., MacTough, S. C., Rooney, C. S., Balani, S. K., Condra, J. H., Emini, E. A., Goldman, M. E., Greenlee, W. J. & Kauffman, L. R. (1993). J. Med. Chem. 36, 1291–1294.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds