organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino-2-phen­oxy­pyrimidine

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 7 July 2009; accepted 8 July 2009; online 15 July 2009)

In the title compound, C10H9N3O, the organic rings linked to the ether O atom make a dihedral angle of 76.8 (1)° and the C—O—C angle is widened to 119.07 (15)°. In the crystal, adjacent mol­ecules are connected by an N—H⋯N hydrogen bond, generating a chain running parallel to the b axis. The crystal is a non-merohedral twin with a ratio of twin components of 0.508 (3):0.492 (3).

Related literature

For 2-phenoxy­pyrimidine, see: Shah Bakhtiar et al. (2009[Shah Bakhtiar, N., Abdullah, Z. & Ng, S. W. (2009). Acta Cryst. E65, o114.]). For the procedure to cope with twinned diffraction data, see: Spek (2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9N3O

  • Mr = 187.20

  • Monoclinic, P 21 /n

  • a = 8.8443 (3) Å

  • b = 12.1214 (3) Å

  • c = 9.0415 (2) Å

  • β = 96.751 (2)°

  • V = 962.58 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 120 K

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: none

  • 6375 measured reflections

  • 2178 independent reflections

  • 1694 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.163

  • S = 1.10

  • 2178 reflections

  • 136 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯N1i 0.88 (1) 2.12 (1) 2.992 (2) 173 (2)
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For 2-phenoxypyrimidine, see: Shah Bakhtiar et al. (2009). For the procedure to cope with twinned diffraction data, see: Spek (2003).

Experimental top

Phenol (1.88 g, 20 mmol) and sodium hydroxide (0.80 g, 20 mmol) were dissolved in water (50 ml) and to the solution was added 4-amino-2-chloropyridimidine (2.60 g, 20 mmol) dissolved in THF (50 ml). The mixture was heated for 4 h. Water was added and the organic phase was extracted with chloroform. The chloroform solution was dried over sodium sulfate; slow evaporation led to the formation of colorless crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The H atoms bonded to N were freely refined.

The crystal is a non-merohedral twin; the twin law as given by PLATON is (Spek, 2003) (-1 0 0, 0 - 1 0, 0.240 0 1); the refinement gave a ratio of twin components of 0.508 (3)/0.492 (3).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C10H9N3O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
4-Amino-2-phenoxypyrimidine top
Crystal data top
C10H9N3OF(000) = 392
Mr = 187.20Dx = 1.292 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2238 reflections
a = 8.8443 (3) Åθ = 2.3–27.9°
b = 12.1214 (3) ŵ = 0.09 mm1
c = 9.0415 (2) ÅT = 120 K
β = 96.751 (2)°Block, colorless
V = 962.58 (5) Å30.40 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
1694 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 27.5°, θmin = 2.8°
ω scansh = 1011
6375 measured reflectionsk = 1515
2178 independent reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0791P)2 + 0.3378P]
where P = (Fo2 + 2Fc2)/3
2178 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.43 e Å3
2 restraintsΔρmin = 0.32 e Å3
Crystal data top
C10H9N3OV = 962.58 (5) Å3
Mr = 187.20Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.8443 (3) ŵ = 0.09 mm1
b = 12.1214 (3) ÅT = 120 K
c = 9.0415 (2) Å0.40 × 0.20 × 0.10 mm
β = 96.751 (2)°
Data collection top
Bruker SMART APEX
diffractometer
1694 reflections with I > 2σ(I)
6375 measured reflectionsRint = 0.028
2178 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0552 restraints
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.43 e Å3
2178 reflectionsΔρmin = 0.32 e Å3
136 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2422 (2)0.48867 (12)0.00659 (16)0.0317 (4)
N10.2790 (2)0.36872 (13)0.19209 (18)0.0235 (4)
N20.2591 (2)0.56448 (13)0.21860 (17)0.0213 (4)
N30.2755 (3)0.64646 (15)0.4479 (2)0.0348 (5)
H10.252 (3)0.7092 (13)0.402 (2)0.030 (7)*
H20.284 (3)0.641 (2)0.5458 (11)0.037 (7)*
C10.2551 (3)0.39941 (16)0.1029 (2)0.0220 (5)
C20.3964 (3)0.35937 (18)0.1237 (2)0.0264 (5)
H2A0.48570.38890.06930.032*
C30.4063 (3)0.27495 (19)0.2257 (2)0.0339 (6)
H30.50300.24600.24100.041*
C40.2763 (4)0.23278 (18)0.3052 (2)0.0369 (7)
H40.28360.17440.37410.044*
C50.1354 (3)0.2756 (2)0.2843 (2)0.0374 (6)
H50.04610.24750.34030.045*
C60.1240 (3)0.35942 (19)0.1819 (2)0.0307 (5)
H60.02740.38870.16650.037*
C70.2617 (2)0.47102 (16)0.1428 (2)0.0197 (4)
C80.2997 (3)0.36125 (17)0.3429 (2)0.0283 (5)
H80.31330.29000.38620.034*
C90.3022 (3)0.44951 (17)0.4354 (2)0.0296 (5)
H90.31900.44130.54050.036*
C100.2785 (3)0.55438 (16)0.3677 (2)0.0236 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0606 (12)0.0159 (7)0.0178 (7)0.0050 (7)0.0018 (7)0.0013 (5)
N10.0341 (11)0.0165 (8)0.0197 (8)0.0014 (7)0.0032 (7)0.0007 (6)
N20.0281 (10)0.0149 (8)0.0212 (8)0.0028 (7)0.0038 (7)0.0003 (6)
N30.0665 (16)0.0182 (9)0.0204 (9)0.0070 (9)0.0083 (9)0.0008 (7)
C10.0351 (13)0.0156 (9)0.0151 (9)0.0006 (8)0.0018 (8)0.0031 (7)
C20.0301 (12)0.0255 (10)0.0229 (10)0.0038 (9)0.0005 (9)0.0044 (8)
C30.0476 (15)0.0264 (11)0.0310 (11)0.0084 (11)0.0186 (11)0.0062 (9)
C40.073 (2)0.0193 (10)0.0198 (10)0.0061 (12)0.0127 (11)0.0026 (8)
C50.0511 (17)0.0348 (12)0.0238 (11)0.0161 (12)0.0058 (11)0.0001 (9)
C60.0311 (13)0.0319 (12)0.0284 (11)0.0006 (10)0.0013 (10)0.0036 (9)
C70.0217 (11)0.0186 (9)0.0185 (9)0.0015 (8)0.0012 (8)0.0019 (7)
C80.0455 (14)0.0174 (9)0.0221 (10)0.0044 (9)0.0046 (9)0.0046 (7)
C90.0482 (15)0.0216 (10)0.0194 (9)0.0028 (10)0.0057 (9)0.0027 (7)
C100.0312 (12)0.0181 (9)0.0223 (9)0.0008 (8)0.0062 (9)0.0007 (7)
Geometric parameters (Å, º) top
O1—C71.359 (2)C2—H2A0.9500
O1—C11.402 (2)C3—C41.380 (4)
N1—C71.320 (2)C3—H30.9500
N1—C81.357 (3)C4—C51.384 (4)
N2—C71.326 (2)C4—H40.9500
N2—C101.344 (2)C5—C61.386 (3)
N3—C101.333 (3)C5—H50.9500
N3—H10.880 (10)C6—H60.9500
N3—H20.882 (10)C8—C91.356 (3)
C1—C21.375 (3)C8—H80.9500
C1—C61.376 (3)C9—C101.416 (3)
C2—C31.387 (3)C9—H90.9500
C7—O1—C1119.07 (15)C4—C5—C6120.2 (2)
C7—N1—C8113.46 (17)C4—C5—H5119.9
C7—N2—C10115.63 (16)C6—C5—H5119.9
C10—N3—H1119.1 (16)C1—C6—C5118.8 (2)
C10—N3—H2118.5 (18)C1—C6—H6120.6
H1—N3—H2122 (2)C5—C6—H6120.6
C2—C1—C6121.9 (2)N1—C7—N2129.54 (18)
C2—C1—O1120.0 (2)N1—C7—O1118.65 (17)
C6—C1—O1118.0 (2)N2—C7—O1111.80 (16)
C1—C2—C3118.7 (2)C9—C8—N1123.86 (18)
C1—C2—H2A120.6C9—C8—H8118.1
C3—C2—H2A120.6N1—C8—H8118.1
C4—C3—C2120.4 (2)C8—C9—C10116.79 (18)
C4—C3—H3119.8C8—C9—H9121.6
C2—C3—H3119.8C10—C9—H9121.6
C3—C4—C5119.9 (2)N3—C10—N2117.46 (18)
C3—C4—H4120.0N3—C10—C9121.85 (18)
C5—C4—H4120.0N2—C10—C9120.69 (18)
C7—O1—C1—C276.8 (2)C8—N1—C7—O1179.1 (2)
C7—O1—C1—C6107.6 (2)C10—N2—C7—N10.8 (3)
C6—C1—C2—C31.1 (3)C10—N2—C7—O1179.63 (19)
O1—C1—C2—C3176.53 (17)C1—O1—C7—N15.8 (3)
C1—C2—C3—C40.4 (3)C1—O1—C7—N2174.56 (18)
C2—C3—C4—C50.7 (3)C7—N1—C8—C90.2 (4)
C3—C4—C5—C61.2 (3)N1—C8—C9—C101.3 (4)
C2—C1—C6—C50.6 (3)C7—N2—C10—N3179.5 (2)
O1—C1—C6—C5176.15 (18)C7—N2—C10—C90.9 (3)
C4—C5—C6—C10.5 (3)C8—C9—C10—N3178.6 (2)
C8—N1—C7—N21.3 (3)C8—C9—C10—N21.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···N1i0.88 (1)2.12 (1)2.992 (2)173 (2)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H9N3O
Mr187.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)8.8443 (3), 12.1214 (3), 9.0415 (2)
β (°) 96.751 (2)
V3)962.58 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6375, 2178, 1694
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.163, 1.10
No. of reflections2178
No. of parameters136
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.32

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···N1i0.88 (1)2.12 (1)2.992 (2)173 (2)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the University of Malaya (FP047/2008 C, RG027/09AFR) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationShah Bakhtiar, N., Abdullah, Z. & Ng, S. W. (2009). Acta Cryst. E65, o114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds