organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Naphth­yl­oxy)pyrimidine

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 7 July 2009; accepted 8 July 2009; online 18 July 2009)

In the title compound, C14H10N2O, the organic rings are inclined at an angle of 86.1 (1)°. The angle at the ether O atom is widened to 117.18 (14)°.

Related literature

For 2-phenoxy­pyrimidine, see: Shah Bakhtiar et al. (2009[Shah Bakhtiar, N., Abdullah, Z. & Ng, S. W. (2009). Acta Cryst. E65, o114.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10N2O

  • Mr = 222.24

  • Orthorhombic, A b a 2

  • a = 13.0119 (3) Å

  • b = 22.4944 (5) Å

  • c = 7.5355 (2) Å

  • V = 2205.60 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 120 K

  • 0.35 × 0.25 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: none

  • 7375 measured reflections

  • 1366 independent reflections

  • 1271 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.081

  • S = 1.03

  • 1366 reflections

  • 154 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For 2-phenoxypyrimidine, see: Shah Bakhtiar et al. (2009).

Experimental top

2-Naphthol (2.88 g, 20 mmol) and sodium hydroxide (0.80 g, 20 mmol) were dissolved in water (50 ml) and to the solution was added 2-chloropyridimidine (2.60 g, 20 mmol) dissolved in THF (50 ml). The mixture was heated for 4 h. Water was added and the organic phase was extracted with chloroform. The chloroform solution was dried over sodium sulfate; slow evaporation led to the formation of colorless crystals.

Refinement top

H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

In the absence of anomalous scatterers, 1111 Friedel pairs were merged and the absolute structure was arbitrarily set.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C14H10N2O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2-(2-Naphthyloxy)pyrimidine top
Crystal data top
C14H10N2OF(000) = 928
Mr = 222.24Dx = 1.339 Mg m3
Orthorhombic, Aba2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: A 2 -2acCell parameters from 3105 reflections
a = 13.0119 (3) Åθ = 2.4–28.0°
b = 22.4944 (5) ŵ = 0.09 mm1
c = 7.5355 (2) ÅT = 120 K
V = 2205.60 (9) Å3Block, colorless
Z = 80.35 × 0.25 × 0.15 mm
Data collection top
Bruker SMART APEX
diffractometer
1271 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 27.5°, θmin = 1.8°
ω scansh = 1616
7375 measured reflectionsk = 2929
1366 independent reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.7203P]
where P = (Fo2 + 2Fc2)/3
1366 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C14H10N2OV = 2205.60 (9) Å3
Mr = 222.24Z = 8
Orthorhombic, Aba2Mo Kα radiation
a = 13.0119 (3) ŵ = 0.09 mm1
b = 22.4944 (5) ÅT = 120 K
c = 7.5355 (2) Å0.35 × 0.25 × 0.15 mm
Data collection top
Bruker SMART APEX
diffractometer
1271 reflections with I > 2σ(I)
7375 measured reflectionsRint = 0.026
1366 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0291 restraint
wR(F2) = 0.081H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
1366 reflectionsΔρmin = 0.18 e Å3
154 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.05750 (10)0.07574 (6)0.49878 (19)0.0292 (3)
N10.15301 (12)0.04684 (7)0.7306 (2)0.0289 (4)
N20.00893 (12)0.09426 (7)0.7772 (2)0.0282 (3)
C10.06580 (13)0.07234 (7)0.6787 (2)0.0225 (4)
C20.16628 (15)0.04528 (9)0.9060 (3)0.0343 (5)
H20.22750.02800.95130.041*
C30.09591 (17)0.06737 (10)1.0241 (3)0.0394 (5)
H30.10740.06631.14860.047*
C40.00719 (16)0.09122 (10)0.9522 (3)0.0362 (5)
H40.04420.10601.03020.043*
C50.02862 (13)0.10606 (8)0.4298 (2)0.0247 (4)
C60.01790 (13)0.16416 (8)0.3824 (3)0.0246 (4)
H60.04600.18390.39850.030*
C70.10287 (13)0.19501 (7)0.3090 (2)0.0233 (4)
C80.09853 (15)0.25595 (8)0.2640 (3)0.0306 (4)
H80.03560.27700.27630.037*
C90.18366 (15)0.28497 (8)0.2030 (3)0.0326 (4)
H90.17950.32600.17470.039*
C100.27770 (14)0.25454 (8)0.1818 (3)0.0292 (4)
H100.33670.27530.14070.035*
C110.28390 (13)0.19533 (8)0.2202 (3)0.0266 (4)
H110.34710.17490.20320.032*
C120.19730 (13)0.16397 (7)0.2850 (2)0.0226 (3)
C130.20239 (14)0.10272 (8)0.3295 (3)0.0271 (4)
H130.26410.08130.30860.033*
C140.11979 (14)0.07416 (7)0.4021 (3)0.0277 (4)
H140.12410.03330.43330.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0250 (6)0.0400 (7)0.0225 (6)0.0093 (5)0.0003 (5)0.0022 (6)
N10.0250 (7)0.0328 (8)0.0290 (9)0.0070 (6)0.0002 (6)0.0046 (7)
N20.0237 (7)0.0350 (8)0.0260 (8)0.0053 (6)0.0005 (7)0.0019 (7)
C10.0219 (8)0.0222 (7)0.0235 (9)0.0017 (6)0.0003 (7)0.0034 (7)
C20.0309 (10)0.0381 (10)0.0339 (12)0.0091 (8)0.0079 (9)0.0034 (8)
C30.0435 (12)0.0513 (13)0.0234 (11)0.0129 (10)0.0051 (9)0.0014 (9)
C40.0331 (10)0.0500 (12)0.0255 (11)0.0115 (9)0.0047 (9)0.0026 (9)
C50.0227 (8)0.0335 (9)0.0180 (8)0.0034 (7)0.0001 (7)0.0016 (7)
C60.0198 (8)0.0323 (8)0.0218 (9)0.0040 (6)0.0013 (7)0.0037 (7)
C70.0245 (8)0.0275 (8)0.0177 (8)0.0040 (7)0.0020 (7)0.0029 (7)
C80.0296 (9)0.0299 (9)0.0322 (10)0.0082 (7)0.0042 (8)0.0005 (8)
C90.0380 (10)0.0240 (8)0.0358 (11)0.0032 (7)0.0041 (10)0.0029 (8)
C100.0300 (9)0.0314 (8)0.0263 (10)0.0050 (7)0.0013 (8)0.0007 (8)
C110.0236 (8)0.0318 (8)0.0243 (9)0.0029 (6)0.0013 (7)0.0005 (7)
C120.0231 (8)0.0261 (8)0.0186 (8)0.0032 (6)0.0007 (7)0.0011 (7)
C130.0254 (8)0.0275 (8)0.0285 (10)0.0066 (7)0.0034 (8)0.0012 (7)
C140.0293 (9)0.0236 (8)0.0303 (11)0.0007 (7)0.0006 (9)0.0009 (7)
Geometric parameters (Å, º) top
O1—C11.362 (2)C7—C81.413 (2)
O1—C51.411 (2)C7—C121.425 (2)
N1—C11.330 (2)C8—C91.365 (3)
N1—C21.334 (3)C8—H80.9500
N2—C11.319 (2)C9—C101.411 (3)
N2—C41.337 (3)C9—H90.9500
C2—C31.370 (3)C10—C111.365 (3)
C2—H20.9500C10—H100.9500
C3—C41.383 (3)C11—C121.416 (2)
C3—H30.9500C11—H110.9500
C4—H40.9500C12—C131.420 (2)
C5—C61.362 (2)C13—C141.366 (3)
C5—C141.402 (2)C13—H130.9500
C6—C71.418 (2)C14—H140.9500
C6—H60.9500
C1—O1—C5117.18 (14)C6—C7—C12118.81 (14)
C1—N1—C2114.41 (16)C9—C8—C7120.79 (16)
C1—N2—C4114.86 (16)C9—C8—H8119.6
N2—C1—N1128.65 (17)C7—C8—H8119.6
N2—C1—O1118.73 (15)C8—C9—C10120.66 (16)
N1—C1—O1112.61 (15)C8—C9—H9119.7
N1—C2—C3123.22 (19)C10—C9—H9119.7
N1—C2—H2118.4C11—C10—C9120.02 (17)
C3—C2—H2118.4C11—C10—H10120.0
C2—C3—C4116.4 (2)C9—C10—H10120.0
C2—C3—H3121.8C10—C11—C12120.80 (16)
C4—C3—H3121.8C10—C11—H11119.6
N2—C4—C3122.46 (19)C12—C11—H11119.6
N2—C4—H4118.8C11—C12—C13121.86 (16)
C3—C4—H4118.8C11—C12—C7119.05 (14)
C6—C5—C14122.60 (16)C13—C12—C7119.08 (16)
C6—C5—O1118.62 (16)C14—C13—C12120.94 (16)
C14—C5—O1118.65 (15)C14—C13—H13119.5
C5—C6—C7119.48 (15)C12—C13—H13119.5
C5—C6—H6120.3C13—C14—C5118.99 (15)
C7—C6—H6120.3C13—C14—H14120.5
C8—C7—C6122.49 (15)C5—C14—H14120.5
C8—C7—C12118.66 (16)
C4—N2—C1—N11.5 (3)C6—C7—C8—C9176.20 (19)
C4—N2—C1—O1177.46 (18)C12—C7—C8—C91.6 (3)
C2—N1—C1—N22.1 (3)C7—C8—C9—C100.7 (3)
C2—N1—C1—O1176.91 (17)C8—C9—C10—C110.8 (3)
C5—O1—C1—N23.8 (2)C9—C10—C11—C121.3 (3)
C5—O1—C1—N1175.36 (14)C10—C11—C12—C13178.62 (19)
C1—N1—C2—C30.7 (3)C10—C11—C12—C70.3 (3)
N1—C2—C3—C41.0 (3)C8—C7—C12—C111.1 (3)
C1—N2—C4—C30.5 (3)C6—C7—C12—C11176.80 (17)
C2—C3—C4—N21.7 (4)C8—C7—C12—C13179.90 (17)
C1—O1—C5—C696.5 (2)C6—C7—C12—C132.2 (3)
C1—O1—C5—C1487.6 (2)C11—C12—C13—C14175.94 (19)
C14—C5—C6—C72.8 (3)C7—C12—C13—C143.0 (3)
O1—C5—C6—C7178.52 (16)C12—C13—C14—C51.0 (3)
C5—C6—C7—C8177.22 (18)C6—C5—C14—C132.0 (3)
C5—C6—C7—C120.6 (3)O1—C5—C14—C13177.73 (17)

Experimental details

Crystal data
Chemical formulaC14H10N2O
Mr222.24
Crystal system, space groupOrthorhombic, Aba2
Temperature (K)120
a, b, c (Å)13.0119 (3), 22.4944 (5), 7.5355 (2)
V3)2205.60 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.25 × 0.15
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7375, 1366, 1271
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.081, 1.03
No. of reflections1366
No. of parameters154
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.18

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

We thank the University of Malaya (FP047/2008 C, RG027/09AFR) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationShah Bakhtiar, N., Abdullah, Z. & Ng, S. W. (2009). Acta Cryst. E65, o114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds