organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1′-Methyl-2,2′′-dioxoindoline-3-spiro-2′-pyrrolidine-3′-spiro-3′′-indoline-4′,4′-di­carbo­nitrile

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 11 July 2009; accepted 16 July 2009; online 22 July 2009)

In the title compound, C21H15N5O2, the pyrrolidine ring adopts a twist conformation. Both the oxindole rings are planar [maximum deviations of 0.076 (1) and 0.029 (1) Å in the two rings] and are oriented at a dihedral angle of 72.7 (1)°. The crystal structure is stabilized by C—H⋯O, N—H⋯O, N—H⋯N and C—H⋯π inter­actions.

Related literature

For the use of indole derivatives as bioactive drugs, see: Stevenson et al. (2000[Stevenson, G. I., Smith, A. L., Lewis, S. G., Neduvelil, J. G., Patel, S., Marwood, R. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697-2704.]). They exibit anti-allergic, central nervous system depressant and muscle-relaxant properties, see: Harris & Uhle (1960[Harris, L. S. & Uhle, F. C. (1960). J. Pharmacol. Exp. Ther. 128, 353-363.]); Ho et al. (1986[Ho, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem. 29, 118-121.]). Indoles also exhibit high aldose reductase inhibitory activity, see: Rajeswaran et al. (1999[Rajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369-1371.]). For puckering and asymmetry parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15N5O2

  • Mr = 369.38

  • Monoclinic, P 21 /n

  • a = 13.3173 (3) Å

  • b = 9.9480 (2) Å

  • c = 13.3950 (3) Å

  • β = 91.827 (1)°

  • V = 1773.67 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.972, Tmax = 0.982

  • 26314 measured reflections

  • 6939 independent reflections

  • 4820 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.142

  • S = 1.02

  • 6939 reflections

  • 263 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2 0.93 2.49 3.1371 (15) 127
C17—H17⋯O1 0.93 2.47 3.1433 (16) 130
C20—H20B⋯O1 0.97 2.54 2.9986 (14) 109
C22—H22B⋯O2i 0.96 2.53 3.3713 (15) 147
N12—H12⋯O2ii 0.853 (17) 2.591 (17) 3.2114 (13) 130.5 (14)
N12—H12⋯N19ii 0.853 (17) 2.371 (17) 3.1613 (13) 154.4 (15)
C14—H14⋯O2ii 0.93 2.51 3.2305 (16) 135
N1—H1⋯N24iii 0.913 (18) 2.174 (18) 3.0315 (15) 156.1 (16)
C7—H7⋯Cg5iv 0.93 2.84 3.5366 (15) 156
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) -x, -y, -z+1. Cg5 is the centroid of the C13–C18 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Indole derivatives are used as bioactive drugs (Stevenson et al., 2000) and they exibit anti-allergic, central nervous system depressant and muscle relaxant properties (Harris & Uhle 1960; Ho et al., 1986). Indoles have been proved to display high aldose reductase inhibitory activity (Rajeswaran et al., 1999). Against this background and to ascertain the molecular conformation, the structure determination of the title compound has been carried out.

The ORTEP plot of the molecule is shown in Fig. 1. The pyrrolidine ring adopts a twist conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) for this ring q2 = 0.399 (1)Å, π = 202.5 (2)° and Δ2(C21) = 3.0 (1)°. Both oxindole rings are planar and the keto atoms O1 and O3 deviate by 0.207 (1) and -0.093 (1)Å, respectively. The oxindole rings attached at 4 and 5 positions of the pyrrolidine ring are oriented at an angle of 72.7 (1)°. In the indole ring system, the endocyclic angles at C8 and C14 are contracted to 117.3 (1)° and 117.4 (1)°, while those at C9 and C13 are expanded to 122.2 (1)° and 122.5 (1)°, respectively. The cyano groups are almost linear which can be seen from the bond angles of 176.4 (1)° (C21-C23-N24) and 175.2 (1)° (C21-C25-N26). The sum of the bond angles around the hetero nitrogen atom in the oxindole ring systems are N1 [360.0°] and N12 [359.8°] and in accordance with the sp2 hybridization. The sum of the bond angles at N19 (334.4°) in the pyrrolidine ring system is in accordance with the sp3 hybridization.

The packing of the molecules in the crystal structure is stabilized by C-H···O, N-H···O, N-H···N and C-H···π interactions. Atom C22 (x, y, z) donates a proton to O2 (1/2-x, 1/2+y, 1/2-z) and forms a zig-zag chain running along the b-axis. The intermolecular N1-H1···N24 hydrogen bond forms a one dimensional chain running along the ac diagonal axis. The indole ring interacts with the other indole moiety through an intermolecular C-H···π interaction involving atom C7, the separation between H7 and the centroid (Cg5) of the ring (C13/C14/C15/C16/C17/C18) being 2.666Å.

Related literature top

For the use of indole derivatives as bioactive drugs, see: Stevenson et al. (2000). They exibit anti-allergic, central nervous system depressant and muscle-relaxant properties, see: Harris & Uhle (1960); Ho et al. (1986). Indoles also exhibit high aldose reductase inhibitory activity, see: Rajeswaran et al. (1999). For puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983). Cg5 is the centroid of the C13–C18 ring.

Experimental top

A mixture of isatin, sarcosine and isatylidene malononitrile in methanol and a catalytic amount of silica gel (100–200 mesh) was added and refluxed for about 15 minutes. The precipitated solid was filtered, dried and purified by column chromatography to afford the pure product in 87% yield. The purified compound was recrystallized from ethanol by using slow evaporation method.

Refinement top

H atoms bonded to N were freely refined while the other H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms. The components of the anisotropic displacement parameters of (C21-C23) and (C21-C25) in the direction of the bond between them were restrained to be equal within an effective standard deviation of 0.001.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecule showing the displacement ellipsoids at the 50% probability level. The H atoms are shown as small circles of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed down c axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
1'-Methyl-2,2''-dioxoindoline-3-spiro-2'-pyrrolidine-3'-spiro-3''-indoline- 4',4'-dicarbonitrile top
Crystal data top
C21H15N5O2F(000) = 768
Mr = 369.38Dx = 1.383 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3546 reflections
a = 13.3173 (3) Åθ = 2.1–33.5°
b = 9.9480 (2) ŵ = 0.09 mm1
c = 13.3950 (3) ÅT = 293 K
β = 91.827 (1)°Block, colourless
V = 1773.67 (7) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
6939 independent reflections
Radiation source: fine-focus sealed tube4820 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and ϕ scansθmax = 33.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1820
Tmin = 0.972, Tmax = 0.982k = 1514
26314 measured reflectionsl = 2019
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0723P)2 + 0.242P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.012
6939 reflectionsΔρmax = 0.38 e Å3
263 parametersΔρmin = 0.21 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0042 (12)
Crystal data top
C21H15N5O2V = 1773.67 (7) Å3
Mr = 369.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.3173 (3) ŵ = 0.09 mm1
b = 9.9480 (2) ÅT = 293 K
c = 13.3950 (3) Å0.30 × 0.25 × 0.20 mm
β = 91.827 (1)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
6939 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
4820 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.982Rint = 0.030
26314 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0502 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.38 e Å3
6939 reflectionsΔρmin = 0.21 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.62030 (6)0.88197 (10)0.24064 (7)0.0387 (2)
O20.24158 (6)0.73812 (9)0.25781 (7)0.03117 (19)
N10.59318 (8)0.75699 (11)0.09828 (8)0.0329 (2)
H10.6578 (14)0.7468 (18)0.0787 (14)0.058 (5)*
C20.56573 (8)0.82292 (11)0.18087 (8)0.0270 (2)
C30.44951 (7)0.81058 (11)0.18735 (7)0.02235 (19)
C40.42192 (8)0.73937 (11)0.09067 (8)0.0254 (2)
C50.33077 (10)0.71016 (14)0.04484 (9)0.0352 (3)
H50.27120.73160.07550.042*
C60.32903 (11)0.64796 (15)0.04818 (10)0.0417 (3)
H60.26790.62720.07990.050*
C70.41773 (12)0.61699 (14)0.09353 (10)0.0417 (3)
H70.41530.57400.15520.050*
C80.50971 (11)0.64808 (13)0.04977 (9)0.0362 (3)
H80.56920.62830.08110.043*
C90.51005 (9)0.70967 (11)0.04223 (8)0.0281 (2)
C100.42527 (7)0.73565 (10)0.28602 (7)0.02080 (18)
C110.31810 (8)0.67524 (11)0.27584 (8)0.0236 (2)
N120.32571 (7)0.54152 (10)0.29159 (8)0.0301 (2)
H120.2748 (13)0.4894 (17)0.2909 (12)0.045 (4)*
C130.42464 (8)0.50270 (11)0.31500 (8)0.0273 (2)
C140.45870 (11)0.37590 (13)0.33844 (11)0.0386 (3)
H140.41520.30280.33910.046*
C150.55997 (12)0.36121 (14)0.36089 (11)0.0436 (3)
H150.58520.27640.37670.052*
C160.62440 (10)0.46957 (14)0.36045 (11)0.0405 (3)
H160.69230.45700.37620.049*
C170.58894 (8)0.59738 (13)0.33672 (9)0.0316 (2)
H170.63250.67050.33650.038*
C180.48791 (8)0.61382 (11)0.31355 (8)0.0236 (2)
N190.39864 (7)0.93947 (9)0.19956 (6)0.02403 (18)
C200.41979 (9)0.98552 (11)0.30134 (8)0.0266 (2)
H20A0.36681.04420.32360.032*
H20B0.48311.03360.30590.032*
C210.42485 (8)0.85489 (11)0.36474 (8)0.02283 (19)
C220.42339 (11)1.04057 (13)0.12517 (10)0.0376 (3)
H22A0.49391.06030.13030.056*
H22B0.38571.12100.13680.056*
H22C0.40681.00680.05960.056*
C230.33963 (8)0.84184 (12)0.43191 (8)0.0281 (2)
N240.27708 (9)0.82688 (14)0.48603 (9)0.0446 (3)
C250.51485 (8)0.85674 (11)0.43181 (8)0.0268 (2)
N260.57990 (8)0.86218 (12)0.48812 (8)0.0392 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0260 (4)0.0448 (5)0.0452 (5)0.0086 (4)0.0027 (4)0.0073 (4)
O20.0199 (3)0.0330 (4)0.0406 (5)0.0004 (3)0.0001 (3)0.0051 (3)
N10.0244 (5)0.0381 (6)0.0370 (5)0.0003 (4)0.0122 (4)0.0043 (4)
C20.0234 (5)0.0257 (5)0.0323 (5)0.0019 (4)0.0072 (4)0.0021 (4)
C30.0203 (4)0.0223 (5)0.0247 (4)0.0001 (4)0.0050 (3)0.0000 (4)
C40.0275 (5)0.0251 (5)0.0240 (5)0.0005 (4)0.0052 (4)0.0001 (4)
C50.0318 (6)0.0435 (7)0.0303 (5)0.0005 (5)0.0015 (5)0.0043 (5)
C60.0428 (7)0.0509 (8)0.0311 (6)0.0057 (6)0.0035 (5)0.0051 (5)
C70.0594 (9)0.0378 (7)0.0283 (6)0.0034 (6)0.0073 (6)0.0066 (5)
C80.0450 (7)0.0327 (6)0.0318 (6)0.0024 (5)0.0144 (5)0.0035 (5)
C90.0316 (5)0.0250 (5)0.0281 (5)0.0010 (4)0.0092 (4)0.0008 (4)
C100.0175 (4)0.0207 (4)0.0242 (4)0.0003 (3)0.0021 (3)0.0001 (3)
C110.0212 (4)0.0254 (5)0.0243 (4)0.0031 (4)0.0011 (4)0.0022 (4)
N120.0246 (4)0.0247 (5)0.0408 (5)0.0067 (4)0.0023 (4)0.0056 (4)
C130.0278 (5)0.0239 (5)0.0301 (5)0.0005 (4)0.0021 (4)0.0036 (4)
C140.0427 (7)0.0243 (5)0.0485 (7)0.0005 (5)0.0063 (6)0.0087 (5)
C150.0482 (8)0.0310 (6)0.0509 (8)0.0102 (6)0.0085 (6)0.0090 (6)
C160.0329 (6)0.0388 (7)0.0490 (7)0.0105 (5)0.0097 (5)0.0019 (6)
C170.0245 (5)0.0308 (6)0.0394 (6)0.0025 (4)0.0022 (4)0.0011 (5)
C180.0222 (4)0.0225 (5)0.0261 (5)0.0011 (4)0.0002 (4)0.0007 (4)
N190.0274 (4)0.0206 (4)0.0243 (4)0.0015 (3)0.0058 (3)0.0027 (3)
C200.0305 (5)0.0207 (5)0.0286 (5)0.0005 (4)0.0027 (4)0.0004 (4)
C210.0204 (4)0.0247 (5)0.0236 (4)0.0003 (4)0.0035 (3)0.0013 (4)
C220.0465 (7)0.0291 (6)0.0381 (6)0.0048 (5)0.0153 (5)0.0108 (5)
C230.0242 (5)0.0324 (6)0.0279 (5)0.0002 (4)0.0044 (4)0.0010 (4)
N240.0340 (6)0.0591 (8)0.0414 (6)0.0017 (5)0.0139 (5)0.0006 (5)
C250.0247 (5)0.0283 (5)0.0275 (5)0.0002 (4)0.0025 (4)0.0031 (4)
N260.0328 (5)0.0475 (7)0.0370 (5)0.0005 (5)0.0050 (4)0.0064 (5)
Geometric parameters (Å, º) top
O1—C21.2154 (14)N12—H120.853 (17)
O2—C111.2134 (13)C13—C141.3735 (16)
N1—C21.3467 (15)C13—C181.3904 (15)
N1—C91.3993 (16)C14—C151.380 (2)
N1—H10.913 (18)C14—H140.9300
C2—C31.5578 (15)C15—C161.378 (2)
C3—N191.4618 (13)C15—H150.9300
C3—C41.5111 (15)C16—C171.3896 (18)
C3—C101.5601 (14)C16—H160.9300
C4—C51.3738 (17)C17—C181.3809 (15)
C4—C91.3908 (15)C17—H170.9300
C5—C61.3908 (18)N19—C201.4572 (14)
C5—H50.9300N19—C221.4607 (14)
C6—C71.380 (2)C20—C211.5527 (15)
C6—H60.9300C20—H20A0.9700
C7—C81.376 (2)C20—H20B0.9700
C7—H70.9300C21—C251.4749 (15)
C8—C91.3760 (16)C21—C231.4763 (15)
C8—H80.9300C22—H22A0.9600
C10—C181.5103 (14)C22—H22B0.9600
C10—C111.5505 (14)C22—H22C0.9600
C10—C211.5871 (14)C23—N241.1314 (14)
C11—N121.3502 (14)C25—N261.1317 (15)
N12—C131.3989 (15)
C2—N1—C9111.95 (10)C14—C13—C18122.51 (11)
C2—N1—H1125.0 (12)C14—C13—N12127.35 (11)
C9—N1—H1123.0 (12)C18—C13—N12110.14 (9)
O1—C2—N1127.18 (11)C13—C14—C15117.41 (12)
O1—C2—C3125.15 (10)C13—C14—H14121.3
N1—C2—C3107.67 (10)C15—C14—H14121.3
N19—C3—C4113.97 (9)C16—C15—C14121.37 (12)
N19—C3—C2113.70 (9)C16—C15—H15119.3
C4—C3—C2101.77 (8)C14—C15—H15119.3
N19—C3—C10102.43 (7)C15—C16—C17120.64 (12)
C4—C3—C10116.80 (9)C15—C16—H16119.7
C2—C3—C10108.52 (8)C17—C16—H16119.7
C5—C4—C9119.56 (10)C18—C17—C16118.77 (11)
C5—C4—C3132.01 (10)C18—C17—H17120.6
C9—C4—C3108.28 (10)C16—C17—H17120.6
C4—C5—C6118.92 (11)C17—C18—C13119.29 (10)
C4—C5—H5120.5C17—C18—C10132.57 (10)
C6—C5—H5120.5C13—C18—C10108.13 (9)
C7—C6—C5120.24 (13)C20—N19—C22112.38 (9)
C7—C6—H6119.9C20—N19—C3107.70 (8)
C5—C6—H6119.9C22—N19—C3114.34 (9)
C8—C7—C6121.67 (12)N19—C20—C21104.61 (8)
C8—C7—H7119.2N19—C20—H20A110.8
C6—C7—H7119.2C21—C20—H20A110.8
C9—C8—C7117.32 (12)N19—C20—H20B110.8
C9—C8—H8121.3C21—C20—H20B110.8
C7—C8—H8121.3H20A—C20—H20B108.9
C8—C9—C4122.26 (12)C25—C21—C23104.79 (9)
C8—C9—N1127.61 (11)C25—C21—C20110.06 (9)
C4—C9—N1110.06 (10)C23—C21—C20112.71 (9)
C18—C10—C11102.13 (8)C25—C21—C10113.20 (8)
C18—C10—C3117.56 (8)C23—C21—C10111.00 (9)
C11—C10—C3108.98 (8)C20—C21—C10105.26 (8)
C18—C10—C21116.82 (8)N19—C22—H22A109.5
C11—C10—C21108.99 (8)N19—C22—H22B109.5
C3—C10—C21102.18 (8)H22A—C22—H22B109.5
O2—C11—N12126.68 (10)N19—C22—H22C109.5
O2—C11—C10125.63 (10)H22A—C22—H22C109.5
N12—C11—C10107.69 (9)H22B—C22—H22C109.5
C11—N12—C13111.86 (9)N24—C23—C21176.43 (13)
C11—N12—H12122.8 (11)N26—C25—C21175.22 (12)
C13—N12—H12125.2 (11)
C9—N1—C2—O1175.23 (12)C11—N12—C13—C181.10 (14)
C9—N1—C2—C34.82 (13)C18—C13—C14—C150.1 (2)
O1—C2—C3—N1952.14 (15)N12—C13—C14—C15178.85 (13)
N1—C2—C3—N19127.91 (10)C13—C14—C15—C160.4 (2)
O1—C2—C3—C4175.14 (12)C14—C15—C16—C170.3 (2)
N1—C2—C3—C44.91 (11)C15—C16—C17—C180.0 (2)
O1—C2—C3—C1061.12 (14)C16—C17—C18—C130.28 (18)
N1—C2—C3—C10118.84 (10)C16—C17—C18—C10179.26 (12)
N19—C3—C4—C549.34 (16)C14—C13—C18—C170.21 (18)
C2—C3—C4—C5172.16 (13)N12—C13—C18—C17178.72 (10)
C10—C3—C4—C569.89 (16)C14—C13—C18—C10179.42 (11)
N19—C3—C4—C9126.17 (10)N12—C13—C18—C100.49 (13)
C2—C3—C4—C93.36 (11)C11—C10—C18—C17177.43 (12)
C10—C3—C4—C9114.60 (10)C3—C10—C18—C1763.40 (16)
C9—C4—C5—C61.73 (19)C21—C10—C18—C1758.64 (16)
C3—C4—C5—C6176.83 (12)C11—C10—C18—C131.63 (11)
C4—C5—C6—C70.3 (2)C3—C10—C18—C13117.54 (10)
C5—C6—C7—C81.1 (2)C21—C10—C18—C13120.42 (10)
C6—C7—C8—C91.0 (2)C4—C3—N19—C20171.14 (9)
C7—C8—C9—C40.43 (19)C2—C3—N19—C2072.83 (10)
C7—C8—C9—N1176.24 (12)C10—C3—N19—C2044.04 (10)
C5—C4—C9—C81.83 (18)C4—C3—N19—C2263.21 (12)
C3—C4—C9—C8177.99 (11)C2—C3—N19—C2252.83 (13)
C5—C4—C9—N1175.36 (11)C10—C3—N19—C22169.69 (9)
C3—C4—C9—N10.80 (13)C22—N19—C20—C21161.08 (9)
C2—N1—C9—C8174.33 (12)C3—N19—C20—C2134.26 (10)
C2—N1—C9—C42.67 (14)N19—C20—C21—C25132.70 (9)
N19—C3—C10—C18163.79 (9)N19—C20—C21—C23110.72 (10)
C4—C3—C10—C1870.95 (12)N19—C20—C21—C1010.40 (10)
C2—C3—C10—C1843.27 (12)C18—C10—C21—C2524.19 (12)
N19—C3—C10—C1180.73 (10)C11—C10—C21—C25139.22 (9)
C4—C3—C10—C1144.53 (12)C3—C10—C21—C25105.56 (9)
C2—C3—C10—C11158.75 (8)C18—C10—C21—C2393.33 (11)
N19—C3—C10—C2134.50 (9)C11—C10—C21—C2321.70 (12)
C4—C3—C10—C21159.76 (8)C3—C10—C21—C23136.92 (9)
C2—C3—C10—C2186.02 (9)C18—C10—C21—C20144.44 (9)
C18—C10—C11—O2177.12 (10)C11—C10—C21—C20100.54 (9)
C3—C10—C11—O257.82 (14)C3—C10—C21—C2014.69 (10)
C21—C10—C11—O252.93 (14)C25—C21—C23—N2444 (2)
C18—C10—C11—N122.28 (11)C20—C21—C23—N24164 (2)
C3—C10—C11—N12122.78 (9)C10—C21—C23—N2478 (2)
C21—C10—C11—N12126.47 (9)C23—C21—C25—N2630.2 (16)
O2—C11—N12—C13177.24 (11)C20—C21—C25—N2691.2 (16)
C10—C11—N12—C132.15 (13)C10—C21—C25—N26151.3 (15)
C11—N12—C13—C14177.75 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O20.932.493.1371 (15)127
C17—H17···O10.932.473.1433 (16)130
C20—H20B···O10.972.542.9986 (14)109
C22—H22B···O2i0.962.533.3713 (15)147
N12—H12···O2ii0.853 (17)2.591 (17)3.2114 (13)130.5 (14)
N12—H12···N19ii0.853 (17)2.371 (17)3.1613 (13)154.4 (15)
C14—H14···O2ii0.932.513.2305 (16)135
N1—H1···N24iii0.913 (18)2.174 (18)3.0315 (15)156.1 (16)
C7—H7···Cg5iv0.932.843.5366 (15)156
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+3/2, z1/2; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC21H15N5O2
Mr369.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.3173 (3), 9.9480 (2), 13.3950 (3)
β (°) 91.827 (1)
V3)1773.67 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.972, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
26314, 6939, 4820
Rint0.030
(sin θ/λ)max1)0.776
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.142, 1.02
No. of reflections6939
No. of parameters263
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.21

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O20.932.493.1371 (15)127.2
C17—H17···O10.932.473.1433 (16)129.7
C20—H20B···O10.972.542.9986 (14)108.6
C22—H22B···O2i0.962.533.3713 (15)147.0
N12—H12···O2ii0.853 (17)2.591 (17)3.2114 (13)130.5 (14)
N12—H12···N19ii0.853 (17)2.371 (17)3.1613 (13)154.4 (15)
C14—H14···O2ii0.932.513.2305 (16)134.7
N1—H1···N24iii0.913 (18)2.174 (18)3.0315 (15)156.1 (16)
C7—H7···Cg5iv0.932.83743.5366 (15)156.21
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+3/2, z1/2; (iv) x, y, z+1.
 

Acknowledgements

PR thanks Dr Babu Varghese, SAIF, IIT-Madras, India, for his help with the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarris, L. S. & Uhle, F. C. (1960). J. Pharmacol. Exp. Ther. 128, 353–363.  Google Scholar
First citationHo, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem. 29, 118–121.  Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369–1371.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStevenson, G. I., Smith, A. L., Lewis, S. G., Neduvelil, J. G., Patel, S., Marwood, R. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697–2704.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds