organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4-(4-meth­oxy­phen­yl)-1,2,3,3a,4,4a,5,12c-octa­hydro­benzo[f]chromeno[3,4-b]pyrrolizine-4a-carboxyl­ate

aDepartment of Physics, Easwari Engineering College, Ramapuram, Chennai 600 089, India, bDepartment of Physics, SRM University, Ramapuram Campus, Chennai 600 089, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: sudharose18@gmail.com

(Received 12 July 2009; accepted 14 July 2009; online 22 July 2009)

In the title compound, C27H27NO4, both the pyrrolidine rings in the pyrrolizine ring system adopt envelope conformations, whereas the dihydro­pyran ring adopts a half-chair conformation. The methoxy­phenyl group is oriented at an angle of 53.72 (4)° with respect to the naphthalene ring system. Intra­molecular C—H⋯O hydrogen bonds are observed. The crystal structure is stabilized by weak inter­molecular C—H⋯π inter­actions.

Related literature

For the biological activity of pyrrolizine derivatives, see: Amal Raj et al. (2003[Amal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-409.]); Atal (1978[Atal, C. K. (1978). Lloydia, 41, 312-326.]); Denny (2001[Denny, W. A. (2001). Curr. Med. Chem. 8, 533-544.]); Suzuki et al. (1994[Suzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett. 35, 6119-6122.]). For a related structure, see: Ramesh et al. (2007[Ramesh, P., Murugavel, S., SubbiahPandi, A., Murugan, R. & Narayanan, S. S. (2007). Acta Cryst. E63, o4106-o4107.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C27H27NO4

  • Mr = 429.50

  • Triclinic, [P \overline 1]

  • a = 8.7484 (4) Å

  • b = 11.4284 (5) Å

  • c = 11.4444 (6) Å

  • α = 104.127 (2)°

  • β = 91.824 (3)°

  • γ = 101.555 (2)°

  • V = 1083.19 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.974, Tmax = 0.983

  • 22194 measured reflections

  • 4310 independent reflections

  • 2976 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.131

  • S = 1.03

  • 4310 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2 0.98 2.32 2.792 (2) 108
C23—H23⋯Cg1i 0.93 2.92 3.633 (3) 135
C25—H25CCg2ii 0.96 2.90 3.715 (3) 143
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y, -z. Cg1 is the centroid of the C3–C8 ring and Cg2 is the centroid of the C19–C24 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrrolizidine alkaloids occur in more than 40 genera, and are responsible for heavy losses of livestock and poisoning in man due to their hepatotoxity. These alkaloids are also reported to possess a number of other biological activities (Atal, 1978) and are used as DNA minor groove alkylating agents (Denny, 2001). Substituted pyrrolidines have gained much importance because they are the structural elements of many alkaloids. It has been found that they exhibit antifungal activity against various pathogens (Amal Raj et al., 2003). Optically active pyrrolidine derivatives have been used as intermediates in controlled asymmetric synthesis (Suzuki et al., 1994). In view of its biological importance, the crystal structure determination of the title compound was undertaken.

A displacement ellipsoid plot of the title compound is shown in Fig. 1. The pyrrolizine ring system is folded about the bridging N1—C15 bond, as observed in related structures (Ramesh et al., 2007). The sum of bond angles around atom N1 [337.9 (7)°] is in accordance with sp3 hybridization. The napthalene ring system C2-C11 and the methoxyphenyl group C19—C25/O4 are oriented at an angle of 53.72 (4)° with respect to each other. The methoxy group is almost coplanar with the C19—C24 benzene ring [C25—O4—C22—C23 = -174.4 (2)°]. The heterocyclic ring O1/C1/C2/C11—C13 of the chromenopyrrolizine unit adopt a half chair conformation with puckering parameters q2 = 0.381 (2) Å, q3 = -0.281 (2) Å and ϕ = -91.3 (3)° (Cremer and Pople, 1975). In the pyrrolizine ring system, both the pyrrolidine rings, N1/C1/C13—C15 and N1/C15—C18 adopt envelope conformation with puckering parameters q2 = 0.352 (2) Å, ϕ = 78.4 (3)° and q2 = 0.402 (3) Å, ϕ = 100.9 (3)° (Cremer and Pople, 1975) respectively. In the ring N1/C1/C13—C15, atom C13 deviates by 0.547 (8) Å from the least-square plane through the remaining four atoms, whereas in the ring N1/C15—C18, atom C17 deviates by -0.616 (4) Å from the least-squares plane through the remaining four atoms.

The crystal packing is stabilized by intramolecular C—H···O and weak intermolecular C—H···π (C23—H23···Cg1; Cg1 is the centroid of the C3—C8 ring and C25—H25C···Cg2; Cg2 is the centroid of the C19—C24 ring) interactions (Table 1).

Related literature top

For the biological activity of pyrrolizine derivatives, see: Amal Raj et al. (2003); Atal (1978); Denny (2001); Suzuki et al. (1994). For a related structure, see: Ramesh et al. (2007). For ring-puckering parameters, see: Cremer & Pople (1975). Cg1 is the centroid of the C3–C8 ring and Cg2 is the centroid of the C19–C24 ring.

Experimental top

A mixture of (Z)-methyl-2-((1-formylnaphthalen-2-yloxy)methyl)-3-(4-methoxyphenyl) acrylate (20 mmol) and proline (30 mmol) were refluxed in benzene for 20 h and the solvent was removed under reduced pressure. The crude product was subjected to column chromatography to get the pure product. A chloroform and methanol (1:1) solvent mixture was used for the crystallization using the slow evaporation method.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H respectively, and Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 30% probability displacement ellipsoids.
Methyl 4-(4-methoxyphenyl)-1,2,3,3a,4,4a,5,12c- octahydrobenzo[f]chromeno[3,4-b]pyrrolizine-4a-carboxylate top
Crystal data top
C27H27NO4Z = 2
Mr = 429.50F(000) = 456
Triclinic, P1Dx = 1.317 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7484 (4) ÅCell parameters from 6981 reflections
b = 11.4284 (5) Åθ = 2.3–26.0°
c = 11.4444 (6) ŵ = 0.09 mm1
α = 104.127 (2)°T = 293 K
β = 91.824 (3)°Prism, yellow
γ = 101.555 (2)°0.30 × 0.25 × 0.20 mm
V = 1083.19 (9) Å3
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
4310 independent reflections
Radiation source: fine-focus sealed tube2976 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and ϕ scansθmax = 26.2°, θmin = 2.3°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1010
Tmin = 0.974, Tmax = 0.983k = 1414
22194 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.3082P]
where P = (Fo2 + 2Fc2)/3
4310 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C27H27NO4γ = 101.555 (2)°
Mr = 429.50V = 1083.19 (9) Å3
Triclinic, P1Z = 2
a = 8.7484 (4) ÅMo Kα radiation
b = 11.4284 (5) ŵ = 0.09 mm1
c = 11.4444 (6) ÅT = 293 K
α = 104.127 (2)°0.30 × 0.25 × 0.20 mm
β = 91.824 (3)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
4310 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2976 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.983Rint = 0.029
22194 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.03Δρmax = 0.35 e Å3
4310 reflectionsΔρmin = 0.16 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3428 (2)0.57705 (16)0.31111 (15)0.0445 (4)
H10.28660.57520.38360.053*
C20.26413 (19)0.64642 (15)0.23992 (15)0.0431 (4)
C30.2290 (2)0.76283 (16)0.29772 (16)0.0464 (4)
C40.2730 (2)0.82056 (17)0.42105 (17)0.0548 (5)
H40.32840.78340.46690.066*
C50.2352 (3)0.93069 (19)0.4741 (2)0.0657 (6)
H50.26340.96680.55590.079*
C60.1550 (3)0.9895 (2)0.4072 (2)0.0716 (6)
H60.13081.06480.44410.086*
C70.1123 (2)0.93691 (19)0.2880 (2)0.0661 (6)
H70.05940.97700.24370.079*
C80.1466 (2)0.82244 (17)0.23017 (18)0.0521 (5)
C90.0967 (2)0.76322 (19)0.10731 (19)0.0582 (5)
H90.04040.80080.06270.070*
C100.1295 (2)0.65353 (18)0.05396 (17)0.0538 (5)
H100.09450.61550.02660.065*
C110.2164 (2)0.59630 (16)0.11972 (16)0.0462 (4)
C120.3576 (2)0.43780 (17)0.10894 (15)0.0479 (4)
H12A0.46150.48510.10430.057*
H12B0.35220.35300.06430.057*
C130.3321 (2)0.44172 (15)0.23988 (14)0.0425 (4)
C140.4659 (2)0.40757 (17)0.30803 (15)0.0477 (4)
H140.42350.39680.38390.057*
C150.5928 (2)0.52759 (18)0.34653 (17)0.0546 (5)
H150.63440.53490.42910.066*
C160.7312 (2)0.5558 (2)0.2738 (2)0.0688 (6)
H16A0.82110.52890.30140.083*
H16B0.70500.51680.18820.083*
C170.7619 (3)0.6949 (2)0.2989 (3)0.0855 (8)
H17A0.81760.73420.37780.103*
H17B0.82150.72390.23760.103*
C180.5994 (3)0.7186 (2)0.2943 (3)0.0773 (7)
H18A0.59850.80250.33860.093*
H18B0.55790.70560.21140.093*
C190.5143 (2)0.28744 (16)0.25383 (15)0.0454 (4)
C200.5936 (2)0.26369 (18)0.15102 (17)0.0542 (5)
H200.61660.32390.10850.065*
C210.6397 (2)0.15321 (18)0.10964 (18)0.0570 (5)
H210.69400.14040.04070.068*
C220.6059 (2)0.06275 (17)0.16960 (19)0.0562 (5)
C230.5197 (3)0.0811 (2)0.2683 (2)0.0646 (6)
H230.49050.01840.30710.077*
C240.4769 (2)0.19191 (19)0.30954 (18)0.0570 (5)
H240.42060.20340.37750.068*
C250.7526 (3)0.0636 (2)0.0442 (2)0.0881 (8)
H25A0.77670.14400.03090.132*
H25B0.84760.00150.06630.132*
H25C0.70190.05650.02860.132*
C260.1780 (2)0.35504 (17)0.24530 (17)0.0488 (4)
C270.0206 (3)0.3004 (3)0.3694 (3)0.0902 (8)
H27A0.05010.32830.44980.135*
H27B0.00390.21790.35720.135*
H27C0.10260.30100.31190.135*
N10.50894 (18)0.62899 (14)0.35141 (14)0.0554 (4)
O10.24421 (15)0.48642 (12)0.05440 (10)0.0547 (3)
O20.12217 (17)0.38163 (14)0.35295 (13)0.0697 (4)
O30.11479 (19)0.27038 (15)0.16475 (14)0.0831 (5)
O40.6519 (2)0.04732 (14)0.13839 (16)0.0803 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0434 (10)0.0490 (10)0.0396 (9)0.0085 (8)0.0057 (7)0.0093 (8)
C20.0397 (10)0.0457 (10)0.0450 (9)0.0063 (7)0.0072 (7)0.0155 (8)
C30.0380 (10)0.0458 (10)0.0550 (11)0.0044 (7)0.0110 (8)0.0152 (8)
C40.0537 (12)0.0510 (11)0.0574 (11)0.0113 (9)0.0083 (9)0.0091 (9)
C50.0664 (14)0.0559 (12)0.0688 (13)0.0131 (10)0.0135 (11)0.0036 (10)
C60.0648 (14)0.0525 (12)0.0970 (18)0.0187 (10)0.0201 (12)0.0112 (12)
C70.0532 (13)0.0577 (12)0.0948 (17)0.0188 (10)0.0131 (11)0.0267 (12)
C80.0374 (10)0.0532 (11)0.0698 (13)0.0089 (8)0.0118 (9)0.0232 (10)
C90.0466 (11)0.0692 (13)0.0683 (13)0.0148 (9)0.0059 (9)0.0331 (11)
C100.0493 (11)0.0649 (12)0.0495 (10)0.0084 (9)0.0026 (8)0.0223 (9)
C110.0451 (10)0.0483 (10)0.0458 (10)0.0061 (8)0.0076 (8)0.0160 (8)
C120.0557 (11)0.0494 (10)0.0404 (9)0.0138 (8)0.0082 (8)0.0124 (8)
C130.0447 (10)0.0469 (10)0.0368 (9)0.0104 (8)0.0062 (7)0.0117 (7)
C140.0511 (11)0.0567 (11)0.0381 (9)0.0156 (8)0.0078 (8)0.0135 (8)
C150.0521 (11)0.0636 (12)0.0447 (10)0.0167 (9)0.0008 (8)0.0046 (9)
C160.0547 (13)0.0684 (14)0.0753 (14)0.0125 (10)0.0114 (10)0.0036 (11)
C170.0533 (14)0.0721 (15)0.118 (2)0.0002 (11)0.0134 (13)0.0102 (14)
C180.0553 (14)0.0623 (13)0.1104 (19)0.0004 (10)0.0123 (12)0.0241 (13)
C190.0459 (10)0.0520 (10)0.0412 (9)0.0129 (8)0.0048 (8)0.0154 (8)
C200.0625 (12)0.0548 (11)0.0531 (11)0.0183 (9)0.0173 (9)0.0220 (9)
C210.0614 (13)0.0594 (12)0.0546 (11)0.0225 (10)0.0146 (9)0.0140 (10)
C220.0542 (12)0.0509 (11)0.0652 (12)0.0184 (9)0.0026 (10)0.0135 (10)
C230.0704 (14)0.0618 (13)0.0744 (14)0.0199 (11)0.0102 (11)0.0362 (11)
C240.0590 (12)0.0685 (13)0.0535 (11)0.0206 (10)0.0137 (9)0.0273 (10)
C250.0778 (17)0.0780 (16)0.105 (2)0.0431 (13)0.0010 (14)0.0032 (14)
C260.0499 (11)0.0510 (11)0.0488 (10)0.0124 (9)0.0060 (8)0.0175 (9)
C270.0667 (16)0.1030 (19)0.111 (2)0.0060 (14)0.0337 (14)0.0537 (17)
N10.0495 (9)0.0541 (9)0.0567 (9)0.0097 (7)0.0010 (7)0.0046 (8)
O10.0679 (9)0.0583 (8)0.0383 (6)0.0175 (6)0.0014 (6)0.0105 (6)
O20.0631 (9)0.0799 (10)0.0636 (9)0.0022 (7)0.0239 (7)0.0222 (8)
O30.0781 (11)0.0744 (10)0.0743 (10)0.0156 (8)0.0073 (8)0.0027 (9)
O40.0883 (12)0.0606 (9)0.1009 (12)0.0360 (8)0.0093 (9)0.0210 (9)
Geometric parameters (Å, º) top
C1—N11.468 (2)C15—C161.517 (3)
C1—C21.505 (2)C15—H150.9800
C1—C131.545 (2)C16—C171.511 (3)
C1—H10.9800C16—H16A0.9700
C2—C111.370 (2)C16—H16B0.9700
C2—C31.432 (2)C17—C181.501 (3)
C3—C41.409 (3)C17—H17A0.9700
C3—C81.414 (3)C17—H17B0.9700
C4—C51.367 (3)C18—N11.462 (3)
C4—H40.9300C18—H18A0.9700
C5—C61.391 (3)C18—H18B0.9700
C5—H50.9300C19—C201.383 (2)
C6—C71.355 (3)C19—C241.384 (3)
C6—H60.9300C20—C211.380 (2)
C7—C81.410 (3)C20—H200.9300
C7—H70.9300C21—C221.365 (3)
C8—C91.415 (3)C21—H210.9300
C9—C101.344 (3)C22—O41.366 (2)
C9—H90.9300C22—C231.375 (3)
C10—C111.405 (3)C23—C241.369 (3)
C10—H100.9300C23—H230.9300
C11—O11.368 (2)C24—H240.9300
C12—O11.426 (2)C25—O41.415 (3)
C12—C131.513 (2)C25—H25A0.9600
C12—H12A0.9700C25—H25B0.9600
C12—H12B0.9700C25—H25C0.9600
C13—C261.518 (3)C26—O31.187 (2)
C13—C141.550 (2)C26—O21.328 (2)
C14—C191.511 (2)C27—O21.447 (3)
C14—C151.540 (3)C27—H27A0.9600
C14—H140.9800C27—H27B0.9600
C15—N11.482 (2)C27—H27C0.9600
N1—C1—C2116.27 (15)C14—C15—H15107.5
N1—C1—C13106.30 (14)C17—C16—C15102.37 (17)
C2—C1—C13111.88 (14)C17—C16—H16A111.3
N1—C1—H1107.3C15—C16—H16A111.3
C2—C1—H1107.3C17—C16—H16B111.3
C13—C1—H1107.3C15—C16—H16B111.3
C11—C2—C3118.40 (16)H16A—C16—H16B109.2
C11—C2—C1120.71 (15)C18—C17—C16102.44 (18)
C3—C2—C1120.79 (15)C18—C17—H17A111.3
C4—C3—C8118.32 (17)C16—C17—H17A111.3
C4—C3—C2122.10 (17)C18—C17—H17B111.3
C8—C3—C2119.58 (17)C16—C17—H17B111.3
C5—C4—C3120.65 (19)H17A—C17—H17B109.2
C5—C4—H4119.7N1—C18—C17104.1 (2)
C3—C4—H4119.7N1—C18—H18A110.9
C4—C5—C6120.9 (2)C17—C18—H18A110.9
C4—C5—H5119.6N1—C18—H18B110.9
C6—C5—H5119.6C17—C18—H18B110.9
C7—C6—C5119.9 (2)H18A—C18—H18B109.0
C7—C6—H6120.1C20—C19—C24116.18 (17)
C5—C6—H6120.1C20—C19—C14125.22 (16)
C6—C7—C8121.1 (2)C24—C19—C14118.60 (15)
C6—C7—H7119.4C21—C20—C19121.92 (18)
C8—C7—H7119.4C21—C20—H20119.0
C7—C8—C3119.12 (19)C19—C20—H20119.0
C7—C8—C9122.01 (19)C22—C21—C20120.22 (18)
C3—C8—C9118.83 (17)C22—C21—H21119.9
C10—C9—C8121.16 (18)C20—C21—H21119.9
C10—C9—H9119.4C21—C22—O4124.41 (19)
C8—C9—H9119.4C21—C22—C23119.14 (18)
C9—C10—C11120.08 (18)O4—C22—C23116.45 (19)
C9—C10—H10120.0C24—C23—C22119.95 (19)
C11—C10—H10120.0C24—C23—H23120.0
O1—C11—C2123.82 (16)C22—C23—H23120.0
O1—C11—C10114.28 (15)C23—C24—C19122.43 (18)
C2—C11—C10121.87 (17)C23—C24—H24118.8
O1—C12—C13112.03 (14)C19—C24—H24118.8
O1—C12—H12A109.2O4—C25—H25A109.5
C13—C12—H12A109.2O4—C25—H25B109.5
O1—C12—H12B109.2H25A—C25—H25B109.5
C13—C12—H12B109.2O4—C25—H25C109.5
H12A—C12—H12B107.9H25A—C25—H25C109.5
C12—C13—C26108.88 (15)H25B—C25—H25C109.5
C12—C13—C1109.10 (14)O3—C26—O2122.82 (18)
C26—C13—C1114.22 (14)O3—C26—C13124.82 (17)
C12—C13—C14113.80 (14)O2—C26—C13112.33 (16)
C26—C13—C14109.63 (14)O2—C27—H27A109.5
C1—C13—C14101.16 (13)O2—C27—H27B109.5
C19—C14—C15118.94 (15)H27A—C27—H27B109.5
C19—C14—C13118.49 (14)O2—C27—H27C109.5
C15—C14—C13104.79 (14)H27A—C27—H27C109.5
C19—C14—H14104.3H27B—C27—H27C109.5
C15—C14—H14104.3C18—N1—C1119.67 (16)
C13—C14—H14104.3C18—N1—C15108.60 (15)
N1—C15—C16105.10 (16)C1—N1—C15109.70 (14)
N1—C15—C14105.46 (14)C11—O1—C12116.10 (13)
C16—C15—C14122.97 (16)C26—O2—C27116.63 (18)
N1—C15—H15107.5C22—O4—C25117.36 (18)
C16—C15—H15107.5
N1—C1—C2—C11111.83 (18)C13—C14—C15—N124.27 (17)
C13—C1—C2—C1110.5 (2)C19—C14—C15—C1639.4 (3)
N1—C1—C2—C372.0 (2)C13—C14—C15—C1695.8 (2)
C13—C1—C2—C3165.67 (14)N1—C15—C16—C1728.2 (2)
C11—C2—C3—C4179.67 (17)C14—C15—C16—C17148.5 (2)
C1—C2—C3—C43.4 (3)C15—C16—C17—C1840.8 (2)
C11—C2—C3—C80.1 (2)C16—C17—C18—N138.3 (3)
C1—C2—C3—C8176.21 (16)C15—C14—C19—C2058.3 (2)
C8—C3—C4—C50.8 (3)C13—C14—C19—C2070.9 (2)
C2—C3—C4—C5178.80 (17)C15—C14—C19—C24121.98 (19)
C3—C4—C5—C61.2 (3)C13—C14—C19—C24108.8 (2)
C4—C5—C6—C70.6 (3)C24—C19—C20—C213.1 (3)
C5—C6—C7—C80.5 (3)C14—C19—C20—C21177.25 (18)
C6—C7—C8—C30.9 (3)C19—C20—C21—C220.7 (3)
C6—C7—C8—C9177.03 (19)C20—C21—C22—O4177.28 (18)
C4—C3—C8—C70.2 (3)C20—C21—C22—C232.8 (3)
C2—C3—C8—C7179.84 (16)C21—C22—C23—C243.8 (3)
C4—C3—C8—C9177.72 (17)O4—C22—C23—C24176.24 (19)
C2—C3—C8—C91.9 (2)C22—C23—C24—C191.4 (3)
C7—C8—C9—C10179.41 (18)C20—C19—C24—C232.0 (3)
C3—C8—C9—C101.5 (3)C14—C19—C24—C23178.29 (18)
C8—C9—C10—C110.9 (3)C12—C13—C26—O322.6 (3)
C3—C2—C11—O1179.38 (15)C1—C13—C26—O3144.8 (2)
C1—C2—C11—O14.3 (3)C14—C13—C26—O3102.5 (2)
C3—C2—C11—C102.5 (3)C12—C13—C26—O2159.46 (15)
C1—C2—C11—C10173.79 (16)C1—C13—C26—O237.2 (2)
C9—C10—C11—O1178.78 (16)C14—C13—C26—O275.45 (18)
C9—C10—C11—C23.0 (3)C17—C18—N1—C1147.84 (18)
O1—C12—C13—C2665.72 (19)C17—C18—N1—C1520.9 (2)
O1—C12—C13—C159.54 (19)C2—C1—N1—C1817.6 (2)
O1—C12—C13—C14171.67 (14)C13—C1—N1—C18107.66 (18)
N1—C1—C13—C1287.59 (17)C2—C1—N1—C15144.03 (15)
C2—C1—C13—C1240.32 (19)C13—C1—N1—C1518.77 (18)
N1—C1—C13—C26150.32 (15)C16—C15—N1—C184.7 (2)
C2—C1—C13—C2681.77 (18)C14—C15—N1—C18136.01 (17)
N1—C1—C13—C1432.66 (17)C16—C15—N1—C1127.72 (16)
C2—C1—C13—C14160.56 (14)C14—C15—N1—C13.54 (19)
C12—C13—C14—C1953.0 (2)C2—C11—O1—C1214.2 (2)
C26—C13—C14—C1969.19 (19)C10—C11—O1—C12167.62 (15)
C1—C13—C14—C19169.85 (14)C13—C12—O1—C1146.8 (2)
C12—C13—C14—C1582.45 (17)O3—C26—O2—C271.0 (3)
C26—C13—C14—C15155.35 (14)C13—C26—O2—C27176.96 (17)
C1—C13—C14—C1534.40 (16)C21—C22—O4—C255.7 (3)
C19—C14—C15—N1159.48 (15)C23—C22—O4—C25174.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O20.982.322.792 (2)108
C23—H23···Cg1i0.932.923.633 (3)135
C25—H25C···Cg2ii0.962.903.715 (3)143
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC27H27NO4
Mr429.50
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.7484 (4), 11.4284 (5), 11.4444 (6)
α, β, γ (°)104.127 (2), 91.824 (3), 101.555 (2)
V3)1083.19 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.974, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
22194, 4310, 2976
Rint0.029
(sin θ/λ)max1)0.620
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.131, 1.03
No. of reflections4310
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.16

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O20.982.322.792 (2)108
C23—H23···Cg1i0.932.923.633 (3)135
C25—H25C···Cg2ii0.962.903.715 (3)143
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z.
 

Acknowledgements

SN thanks Dr Babu Vargheese, SAIF, IIT Madras, India, for his help with the data collection. SN thanks SRM management, India, for their support.

References

First citationAmal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–409.  Web of Science PubMed Google Scholar
First citationAtal, C. K. (1978). Lloydia, 41, 312–326.  CAS PubMed Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDenny, W. A. (2001). Curr. Med. Chem. 8, 533–544.  Web of Science PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRamesh, P., Murugavel, S., SubbiahPandi, A., Murugan, R. & Narayanan, S. S. (2007). Acta Cryst. E63, o4106–o4107.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett. 35, 6119–6122.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds