organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­chloro-N-(3,4-di­chloro­phen­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 15 July 2009; accepted 15 July 2009; online 22 July 2009)

In the crystal structure of the title compound, C12H7Cl4NO2S, the conformation of the N—H bond is syn to the meta-chloro residue in the aniline benzene ring. The two aromatic rings are tilted relative to each other by 68.9 (1)°. N—H⋯O hydrogen bonds connect the mol­ecules into centrosymmetric dimers.

Related literature

For related structures, see: Gowda et al. (2008[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1825.], 2009a[Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o576.],b[Gowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o877.]). For comparative bond lengths in other aryl sulfonamides, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C12H7Cl4NO2S

  • Mr = 371.05

  • Triclinic, [P \overline 1]

  • a = 8.1498 (9) Å

  • b = 8.2633 (9) Å

  • c = 11.887 (1) Å

  • α = 81.857 (9)°

  • β = 72.728 (9)°

  • γ = 78.213 (9)°

  • V = 745.49 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 299 K

  • 0.48 × 0.48 × 0.28 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.664, Tmax = 0.781

  • 7103 measured reflections

  • 2722 independent reflections

  • 2388 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.152

  • S = 1.27

  • 2722 reflections

  • 184 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.833 (17) 2.079 (18) 2.903 (3) 170 (3)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, as part of a study of substituent effects on the structures of N-(aryl)-arylsulfonamides (Gowda et al., 2008; Gowda et al., 2009a; Gowda et al., 2009b), the structure of 2,4-dichloro-N-(3,4-dichlorophenyl)benzenesulfonamide has been determined. The conformations of the N—C bonds in the C—SO2—NH—C segment have trans and gauche torsion angles with the S=O bonds (Fig. 1). The molecule is bent at the S atom with the C—SO2—NH—C torsion angle of -48.2 (2)°. The conformation of the N—H bond is syn to the meta-chloro group in the anilino benzene ring. The two aromatic rings are tilted relative to each other by 68.9 (1)°. The other bond parameters are similar to those observed in 2,4-dimethyl-N-(phenyl)benzenesulfonamide (Gowda et al., 2009a); 4-methylN-(3,4-dimethylphenyl)- benzenesulfonamide (Gowda et al., 2009b); N-(3-chlorophenyl)benzenesulfonamide (Gowda et al., 2008) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing via N—H···O(S) hydrogen bonds (Table 1) is shown in Fig. 2.

Related literature top

For related structures, see: Gowda et al. (2008, 2009a,b). For comparative bond lengths in other aryl sulfonamides, see: Gelbrich et al. (2007); Perlovich et al. (2006).

Experimental top

The solution of 1,3-dichlorobenzene (10 cc) in chloroform (40 cc) was treated dropwise with chlorosulfonic acid (25 cc) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dichlorobenzenesulfonylchloride was treated with 3,4-dichloroaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant solid 2,4-dichloro-N-(3,4-dichlorophenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra. The single crystals used in X-ray diffraction studies were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement top

The amino H atom was located in difference map and refined with restrained geometry to 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
2,4-Dichloro-N-(3,4-dichlorophenyl)benzenesulfonamide top
Crystal data top
C12H7Cl4NO2SZ = 2
Mr = 371.05F(000) = 372
Triclinic, P1Dx = 1.653 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1498 (9) ÅCell parameters from 3818 reflections
b = 8.2633 (9) Åθ = 2.5–27.5°
c = 11.887 (1) ŵ = 0.93 mm1
α = 81.857 (9)°T = 299 K
β = 72.728 (9)°Plate, colourless
γ = 78.213 (9)°0.48 × 0.48 × 0.28 mm
V = 745.49 (13) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2722 independent reflections
Radiation source: fine-focus sealed tube2388 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Rotation method data acquisition using ω and ϕ scansθmax = 25.4°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 99
Tmin = 0.664, Tmax = 0.781k = 99
7103 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.27 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2722 reflections(Δ/σ)max = 0.011
184 parametersΔρmax = 0.68 e Å3
1 restraintΔρmin = 0.48 e Å3
Crystal data top
C12H7Cl4NO2Sγ = 78.213 (9)°
Mr = 371.05V = 745.49 (13) Å3
Triclinic, P1Z = 2
a = 8.1498 (9) ÅMo Kα radiation
b = 8.2633 (9) ŵ = 0.93 mm1
c = 11.887 (1) ÅT = 299 K
α = 81.857 (9)°0.48 × 0.48 × 0.28 mm
β = 72.728 (9)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2722 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2388 reflections with I > 2σ(I)
Tmin = 0.664, Tmax = 0.781Rint = 0.022
7103 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.27Δρmax = 0.68 e Å3
2722 reflectionsΔρmin = 0.48 e Å3
184 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3911 (3)0.5584 (3)0.7834 (2)0.0400 (6)
C20.3221 (3)0.4144 (4)0.8289 (2)0.0464 (6)
H20.32480.33690.77850.056*
C30.2503 (3)0.3869 (4)0.9484 (3)0.0551 (7)
C40.2429 (4)0.5027 (4)1.0245 (2)0.0559 (7)
C50.3100 (4)0.6460 (4)0.9785 (3)0.0590 (7)
H50.30340.72511.02880.071*
C60.3868 (4)0.6734 (4)0.8589 (2)0.0509 (7)
H60.43550.76850.82910.061*
C70.2467 (3)0.8593 (3)0.61967 (19)0.0337 (5)
C80.1074 (3)0.7982 (3)0.6056 (2)0.0352 (5)
C90.0613 (3)0.8837 (3)0.6440 (2)0.0428 (6)
H90.15430.84390.63380.051*
C100.0895 (3)1.0267 (3)0.6968 (2)0.0447 (6)
C110.0473 (3)1.0924 (4)0.7108 (3)0.0513 (7)
H110.02621.19110.74580.062*
C120.2136 (3)1.0071 (3)0.6715 (2)0.0448 (6)
H120.30631.04930.67980.054*
N10.4667 (3)0.5772 (3)0.65959 (18)0.0410 (5)
H1N0.478 (4)0.500 (3)0.618 (2)0.049*
O10.5157 (2)0.7111 (2)0.46042 (14)0.0419 (4)
O20.5641 (2)0.8522 (2)0.61286 (16)0.0485 (5)
Cl10.16795 (16)0.20525 (13)1.00219 (9)0.0922 (4)
Cl20.15005 (13)0.47338 (13)1.17468 (7)0.0813 (3)
Cl30.13671 (8)0.61471 (9)0.54309 (6)0.0544 (3)
Cl40.30088 (9)1.12858 (12)0.75011 (8)0.0705 (3)
S10.46469 (7)0.75391 (7)0.57981 (5)0.0351 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0316 (12)0.0451 (14)0.0404 (12)0.0022 (10)0.0130 (9)0.0006 (10)
C20.0439 (14)0.0462 (15)0.0468 (14)0.0028 (12)0.0137 (11)0.0012 (12)
C30.0428 (15)0.0574 (18)0.0573 (16)0.0035 (13)0.0135 (12)0.0126 (14)
C40.0497 (16)0.063 (2)0.0445 (14)0.0031 (14)0.0093 (12)0.0021 (13)
C50.0676 (19)0.0600 (19)0.0475 (16)0.0058 (15)0.0149 (14)0.0083 (14)
C60.0569 (16)0.0503 (17)0.0459 (14)0.0101 (13)0.0143 (12)0.0040 (12)
C70.0279 (11)0.0346 (12)0.0387 (11)0.0069 (9)0.0102 (9)0.0007 (9)
C80.0336 (12)0.0363 (13)0.0376 (11)0.0085 (10)0.0121 (9)0.0012 (9)
C90.0296 (12)0.0553 (17)0.0459 (13)0.0081 (11)0.0133 (10)0.0050 (12)
C100.0344 (12)0.0496 (15)0.0466 (13)0.0040 (11)0.0136 (10)0.0041 (11)
C110.0471 (15)0.0437 (15)0.0649 (17)0.0001 (12)0.0191 (13)0.0141 (13)
C120.0394 (14)0.0414 (14)0.0582 (15)0.0095 (11)0.0165 (11)0.0089 (12)
N10.0415 (11)0.0400 (12)0.0400 (11)0.0023 (9)0.0121 (9)0.0036 (9)
O10.0400 (9)0.0414 (10)0.0410 (9)0.0075 (7)0.0059 (7)0.0036 (7)
O20.0312 (9)0.0583 (12)0.0615 (11)0.0144 (8)0.0142 (8)0.0106 (9)
Cl10.1158 (8)0.0755 (7)0.0797 (7)0.0406 (6)0.0147 (6)0.0204 (5)
Cl20.0879 (6)0.0890 (7)0.0450 (4)0.0018 (5)0.0006 (4)0.0053 (4)
Cl30.0432 (4)0.0551 (5)0.0720 (5)0.0139 (3)0.0140 (3)0.0250 (4)
Cl40.0396 (4)0.0852 (6)0.0818 (6)0.0187 (4)0.0207 (4)0.0253 (5)
S10.0265 (3)0.0384 (4)0.0406 (4)0.0070 (3)0.0087 (2)0.0033 (3)
Geometric parameters (Å, º) top
C1—C61.386 (4)C7—S11.768 (2)
C1—C21.391 (4)C8—C91.385 (3)
C1—N11.416 (3)C8—Cl31.724 (2)
C2—C31.372 (4)C9—C101.363 (4)
C2—H20.9300C9—H90.9300
C3—C41.388 (4)C10—C111.396 (4)
C3—Cl11.731 (3)C10—Cl41.729 (3)
C4—C51.380 (4)C11—C121.371 (4)
C4—Cl21.723 (3)C11—H110.9300
C5—C61.380 (4)C12—H120.9300
C5—H50.9300N1—S11.625 (2)
C6—H60.9300N1—H1N0.833 (17)
C7—C121.387 (3)O1—S11.4297 (17)
C7—C81.394 (3)O2—S11.4208 (16)
C6—C1—C2119.9 (2)C7—C8—Cl3121.98 (19)
C6—C1—N1123.2 (2)C10—C9—C8119.3 (2)
C2—C1—N1116.9 (2)C10—C9—H9120.3
C3—C2—C1119.9 (3)C8—C9—H9120.3
C3—C2—H2120.1C9—C10—C11121.9 (2)
C1—C2—H2120.1C9—C10—Cl4119.22 (19)
C2—C3—C4120.7 (3)C11—C10—Cl4118.8 (2)
C2—C3—Cl1118.6 (2)C12—C11—C10118.0 (3)
C4—C3—Cl1120.7 (2)C12—C11—H11121.0
C5—C4—C3119.2 (3)C10—C11—H11121.0
C5—C4—Cl2119.1 (2)C11—C12—C7121.5 (2)
C3—C4—Cl2121.8 (2)C11—C12—H12119.2
C6—C5—C4120.8 (3)C7—C12—H12119.2
C6—C5—H5119.6C1—N1—S1124.52 (17)
C4—C5—H5119.6C1—N1—H1N121 (2)
C5—C6—C1119.6 (3)S1—N1—H1N110 (2)
C5—C6—H6120.2O2—S1—O1118.63 (10)
C1—C6—H6120.2O2—S1—N1109.79 (11)
C12—C7—C8119.0 (2)O1—S1—N1104.74 (10)
C12—C7—S1117.67 (17)O2—S1—C7105.89 (11)
C8—C7—S1123.32 (18)O1—S1—C7111.08 (10)
C9—C8—C7120.2 (2)N1—S1—C7106.12 (11)
C9—C8—Cl3117.83 (17)
C6—C1—C2—C30.0 (4)C8—C9—C10—C111.7 (4)
N1—C1—C2—C3178.6 (2)C8—C9—C10—Cl4177.29 (18)
C1—C2—C3—C41.1 (4)C9—C10—C11—C121.1 (4)
C1—C2—C3—Cl1179.28 (19)Cl4—C10—C11—C12177.9 (2)
C2—C3—C4—C50.4 (4)C10—C11—C12—C70.3 (4)
Cl1—C3—C4—C5179.9 (2)C8—C7—C12—C111.1 (4)
C2—C3—C4—Cl2178.9 (2)S1—C7—C12—C11176.5 (2)
Cl1—C3—C4—Cl20.8 (4)C6—C1—N1—S134.0 (3)
C3—C4—C5—C61.3 (5)C2—C1—N1—S1147.43 (19)
Cl2—C4—C5—C6179.4 (2)C1—N1—S1—O265.2 (2)
C4—C5—C6—C12.3 (5)C1—N1—S1—O1166.37 (17)
C2—C1—C6—C51.7 (4)C1—N1—S1—C748.8 (2)
N1—C1—C6—C5179.8 (2)C12—C7—S1—O20.2 (2)
C12—C7—C8—C90.5 (4)C8—C7—S1—O2177.34 (19)
S1—C7—C8—C9176.96 (18)C12—C7—S1—O1129.9 (2)
C12—C7—C8—Cl3179.53 (19)C8—C7—S1—O152.6 (2)
S1—C7—C8—Cl32.0 (3)C12—C7—S1—N1116.8 (2)
C7—C8—C9—C100.8 (4)C8—C7—S1—N160.7 (2)
Cl3—C8—C9—C10178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.83 (2)2.08 (2)2.903 (3)170 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H7Cl4NO2S
Mr371.05
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)8.1498 (9), 8.2633 (9), 11.887 (1)
α, β, γ (°)81.857 (9), 72.728 (9), 78.213 (9)
V3)745.49 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.48 × 0.48 × 0.28
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.664, 0.781
No. of measured, independent and
observed [I > 2σ(I)] reflections
7103, 2722, 2388
Rint0.022
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.152, 1.27
No. of reflections2722
No. of parameters184
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.68, 0.48

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.833 (17)2.079 (18)2.903 (3)170 (3)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for an extension of his research fellowship.

References

First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1825.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o576.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o877.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds